APPENDIX D GEOTECHNICAL ENGINEERING INVESTIGATION # GEOTECHNICAL ENGINEERING INVESTIGATION PROPOSED LIGHT INDUSTRIAL DEVELOPMENT BIRD STREET LIVINGSTON, CALIFORNIA **PROJECT NO. 072-19046** SEPTEMBER 13, 2019 Prepared for: Ms. Janel Freeman QK P.O. Box 3699 Visalia, California 93278 #### Prepared by: KRAZAN & ASSOCIATES, INC. GEOTECHNICAL ENGINEERING DIVISION 448 MITCHELL ROAD SUITE C MODESTO, CALIFORNIA 95354 (209) 572-2200 # GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION September 13, 2019 Project No. 072-19046 Ms. Janel Freeman QK P.O. Box 3699 Visalia, California 93278 RE: Geotec Geotechnical Engineering Investigation Proposed Light Industrial Development **Bird Street** Livingston, California Dear Ms. Freeman: In accordance with your request, we have completed a Geotechnical Engineering Investigation for the above-referenced site. The results of our investigation are presented in the attached report. If you have any questions, or if we may be of further assistance, please do not hesitate to contact our office at (209) 572-2200. Respectfully submitted, KRAZAN & ASSOCIATES, INC. David R. Jarosz, II Managing Engineer RGE No. 2698/RCE No. 60185 DRJ:ht # GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION #### **TABLE OF CONTENTS** | INTRODUCTION | 1 | |---|------------| | PURPOSE AND SCOPE | 1 | | PROPOSED CONSTRUCTION | 2 | | SITE LOCATION AND SITE DESCRIPTION | 2 | | GEOLOGIC SETTING | 2 | | FIELD AND LABORATORY INVESTIGATIONS | | | SOIL PROFILE AND SUBSURFACE CONDITIONS | 4 | | GROUNDWATER | 4 | | SOIL LIQUEFACTION | 5 | | CONCLUSIONS AND RECOMMENDATIONS | | | Administrative Summary | 6 | | Site Preparation | | | Engineered Fill | | | Drainage and Landscaping | | | Utility Trench Backfill | ر | | Foundations - Conventional | 10 | | Floor Slabs and Exterior Flatwork | 11 | | Lateral Earth Pressures and Retaining Walls | 12 | | R-Value Test Results and Pavement Design. | | | Seismic Parameters – 2016 CBC | 13 | | Soil Cement Reactivity | 14 | | Compacted Material Acceptance | | | Testing and Inspection | 14 | | LIMITATIONS | 15 | | SITE PLAN | 17 | | LOGS OF BORINGS (1 TO 6) | Appendix A | | GENERAL EARTHWORK SPECIFICATIONS | Appendix B | | GENERAL PAVING SPECIFICATIONS | Appendix C | # GEOTECHNICAL ENGINEERING • ENVIRONMENTAL ENGINEERING CONSTRUCTION TESTING & INSPECTION September 13, 2019 Project No. 072-19046 #### GEOTECHNICAL ENGINEERING INVESTIGATION PROPOSED LIGHT INDUSTRIAL DEVELOPMENT BIRD STREET LIVINGSTON, CALIFORNIA #### INTRODUCTION This report presents the results of our Geotechnical Engineering Investigation for the proposed Light Industrial Development to be located at Bird Street, approximately 0.4 miles west of Main Street in Livingston, California. Discussions regarding site conditions are presented herein, together with conclusions and recommendations pertaining to site preparation, Engineered Fill, utility trench backfill, drainage and landscaping, foundations, concrete floor slabs and exterior flatwork, retaining walls, soil cement reactivity, and pavement design. A site plan showing the approximate boring locations is presented following the text of this report. A description of the field investigation, boring logs, and the boring log legend are presented in Appendix A. Appendix A also contains a description of the laboratory-testing phase of this study, along with the laboratory test results. Appendices B and C contain guides to earthwork and pavement specifications. When conflicts in the text of the report occur with the general specifications in the appendices, the recommendations in the text of the report have precedence. #### PURPOSE AND SCOPE This investigation was conducted to evaluate the soil and groundwater conditions at the site, to make geotechnical engineering recommendations for use in design of specific construction elements, and to provide criteria for site preparation and Engineered Fill construction. Our scope of services was outlined in our proposal dated July 24, 2019 (KA Proposal No. P462-19) included the following: - A site reconnaissance by a member of our engineering staff to evaluate the surface conditions at the project site. - A field investigation consisting of drilling 6 borings to depths ranging from approximately 10 to 50 feet for evaluation of the subsurface conditions at the project site. - Performing laboratory tests on representative soil samples obtained from the borings to evaluate the physical and index properties of the subsurface soils. - Evaluation of the data obtained from the investigation and an engineering analysis to provide recommendations for use in the project design and preparation of construction specifications. - Preparation of this report summarizing the results, conclusions, recommendations, and findings of our investigation. #### **PROPOSED CONSTRUCTION** We understand that design of the proposed development is currently underway; structural load information and other final details pertaining to the structures are unavailable. On a preliminary basis, it is understood that development will include a light industrial development. It is anticipated the buildings will be single- or two-story structures utilizing shallow conventional foundations and concrete slab-on-grade construction. Foundation loads are anticipated to be light to moderate. On-site paved areas are also planned for the development of the project. In the event, these structural or grading details are inconsistent with the final design criteria, the Soils Engineer should be notified so that we may update this writing as applicable. #### SITE LOCATION AND SITE DESCRIPTION The site is rectangular in shape and encompasses approximately 21 acres. The site is located approximately 0.4 miles west of Main Street, just north of Bird Street in Livingston, California. The site is predominately surrounded by agricultural land. Presently, the majority of the site is occupied by an orchard. The southern ½ of the site predominately consists of fallow agricultural land. A canal trends southwest-northeast through the site. Buried utility lines and irrigation lines trend through portions of the site. The surface soils have a loose consistency. With the exception of the canal banks, the site is relatively level with no major changes in grade. #### **GEOLOGIC SETTING** The San Joaquin Valley which includes the Livingston area, is a topographic and structural basin that is bounded on the east by the Sierra Nevada Mountains and on the west by the Coast Ranges. The Sierra Nevadas, a fault block dipping gently southwestward, is made up of igneous and metamorphic rocks of pre-Tertiary age that comprise the basement complex beneath the Valley. The Coast Ranges contain folded and faulted sedimentary rocks of Mesozoic and Cenozoic age which are similar to those rocks that underlie the Valley at depth and nonconformably overlie the basement complex; gently dipping to nearly horizontal sedimentary rocks of Tertiary and Quaternary age overlie the older rocks. These younger rocks are mostly of continental origin and in the Livingston area; they were derived from the Sierra Nevadas. The Coast Ranges evolved as a result of folding, faulting, and accretion of diverse geologic terrains. They are composed chiefly of sedimentary and metamorphic rocks that are sharply deformed into complex structures. They are broken by numerous faults, the San Andreas Fault being the most notable structural feature. Both the Sierra Nevada and Coast Ranges are geologically young mountain ranges and possess active and potentially active fault zones. Major active faults and fault zones occur at some distance to the east, west, and south of the Livingston area. The Owens Valley Fault Zone bounds the eastern edge of the Sierra Nevada block and contains both active and potentially active faults. Portions of the Greenville, Calaveras, Hayward, and Rinconada Faults, which are to the west, are considered potentially active. The San Andreas Fault is possibly the best known fault and is located about 60 to 70 miles to the west. There are no active fault traces in the project vicinity. Accordingly, the project area is not within an Earthquake Fault Zone (Special Studies Zone) and will not require a special site investigation by an Engineering Geologist. Livingston residents could feel the effects of a large seismic event on one of the nearby active or potentially active fault zones. Livingston has experienced groundshaking from earthquakes in the historical past. According to the County Seismic Safety Element, groundshaking of VI intensity (Modified Mercali Scale) was felt in Livingston from the 1872 Owens Valley Earthquake. This is the largest known earthquake event affecting the Livingston area. Secondary hazards from earthquakes include rupture, seiche, landslides, liquefaction, and subsidence. Since there are no known faults within the immediate area, ground rupture from surface faulting should not be a potential problem. Seiche and landslides are not hazards in the area either. Liquefaction potential (sudden loss of shear strength in a saturated cohesionless soil) should be low since groundshaking intensities within the vicinity are not strong enough to generate this type of failure. In addition, there are no known occurrences of structural or architectural damage due to deep subsidence in the Livingston area. #### FIELD AND LABORATORY INVESTIGATIONS Subsurface soil conditions were explored by drilling 6 borings to depths ranging from approximately 10 to 50 feet below existing site grade, using a truck-mounted drill rig. In addition, 2 bulk subgrade samples were obtained from the site for laboratory R-value testing. The approximate boring and bulk sample locations are shown on the site plan. During drilling operations, penetration tests were performed at regular intervals to evaluate the soil consistency and to
obtain information regarding the engineering properties of the subsoils. Soil samples were retained for laboratory testing. The soils encountered were continuously examined and visually classified in accordance with the Unified Soil Classification System. A more detailed description of the field investigation is presented in Appendix A. Laboratory tests were performed on selected soil samples to evaluate their physical characteristics and engineering properties. The laboratory-testing program was formulated with emphasis on the evaluation of natural moisture, density, gradation, shear strength, consolidation potential, atterberg limits, R-value, and moisture-density relationships of the materials encountered. In addition, chemical tests were performed to evaluate the corrosivity of the soils for buried concrete and metal. Details of the laboratory test program and results of the laboratory tests are summarized in Appendix A. This information, along with the field observations, was used to prepare the final boring logs in Appendix A. #### SOIL PROFILE AND SUBSURFACE CONDITIONS Based on our findings, the subsurface conditions encountered appear typical of those found in the geologic region of the site. In general, the surface soils consisted of approximately 6 to 12 inches of very loose silty sand. These soils are disturbed have low strength characteristics and are highly compressible when saturated. Approximately 6 inches to 3 feet of fill material was encountered within portions of the site associated with the canal banks and irrigation furrows. The fill material predominately consisted of silty sand. The thickness and extent of fill material was determined based on limited test borings and visual observation. Thicker fill may be present at the site. Limited testing was performed on the fill soils during the time of our field and laboratory investigation. Preliminary testing on the fill material suggest that the fill soils have varying strength characteristics ranging from loosely placed to compacted. Below the loose surface soils and fill material, approximately 2 to 3 feet of loose to medium dense silty sand was encountered. Field and laboratory tests suggest that these soils are moderately strong and slightly compressible. Penetration resistance ranged from 10 to 28 blows per foot. Dry densities ranged from 106 to 114 pcf. A representative soil sample consolidated approximately 2½ percent under a 2 ksf load when saturated. A representative soil sample had an angle of internal friction of 34 degrees Below approximately 3 to 4 feet, layers of loose to very dense silty sand, sandy silt, silty sand/sand or sand were encountered. Some of these soils were weakly cemented in parts. Field and laboratory tests suggest that these soils are moderately strong and slightly compressible. Penetration resistance ranged from 13 blows per foot to greater than 50 blows per 6 inches. Dry densities ranged from 84 to 127 pcf. Representative soil samples contained approximately 6 to 68 percent fines. These soils had slightly stronger strength characteristics than the upper soils and extended to the termination depth of our borings. For additional information about the soils encountered, please refer to the boring logs in Appendix A. #### **GROUNDWATER** Test boring locations were checked for the presence of groundwater during and immediately following the drilling operations. Free groundwater was not encountered within a depth of 50 feet during our exploratory drilling. However, information obtained from the State of California Department of Water Resources indicates that historically groundwater has been as shallow as 7 feet within the project site vicinity. It should be recognized that water table elevations may fluctuate with time, being dependent upon seasonal precipitation, irrigation, land use, and climatic conditions, as well as other factors. Therefore, water level observations at the time of the field investigation may vary from those encountered during the construction phase of the project. The evaluation of such factors is beyond the scope of this report. #### SOIL LIQUEFACTION Soil liquefaction is a state of soil particle suspension, caused by a complete loss of strength when the effective stress drops to zero. Liquefaction normally occurs in soils, such as sands, in which the strength is purely frictional. However, liquefaction has occurred in soils other than clean sands. Liquefaction usually occurs under vibratory conditions, such as those induced by seismic events. To evaluate the liquefaction potential of the site, the following items were evaluated: - 1) Soil type - 2) Groundwater depth - 3) Relative density - 4) Initial confining pressure - 5) Intensity and duration of groundshaking The predominant soils within the project site consist of alternating layers of silty sand, sandy silt, sand, and silty sand/sand. Free groundwater was not encountered within a depth of 50 feet below existing site grade during our exploratory drilling. Information obtained from the Department of Water Resources indicated that water wells at the general vicinity had historic groundwater elevations recorded from a period of 1958 to 2008 to be as high as 7 feet below site grade. The potential for soil liquefaction during a seismic event was evaluated using the LIQUEFYPRO computer program (version 5.8h) developed by CivilTech Software. For the analysis, a maximum earthquake magnitude of 6.27 was used. A peak horizontal ground surface acceleration of 0.347g was considered conservative and appropriate for the liquefaction analysis. An estimated high groundwater depth of 7 feet was used for our analysis. The computer analysis indicates that soils above a depth of 7 feet are non-liquefiable due to the absence of groundwater. The soils below a depth of 7 feet have a slight to low potential for liquefaction under seismic shaking due to predominately medium dense silty sand and sand soils and the anticipated low seismicity in the region. The analysis also indicates that the estimated total seismic induced settlement is not anticipated to exceed 1¼ inches. Differential settlement caused by a seismic event is estimated to be less than ¾ inch. The anticipated differential settlement is estimated over the width of the building. #### **CONCLUSIONS AND RECOMMENDATIONS** Based on the findings of our field and laboratory investigations, along with previous geotechnical experience in the project area, the following is a summary of our evaluations, conclusions, and recommendations. #### **Administrative Summary** In brief, the subject site and soil conditions, with the exception of the fill material and existing development, appear to be conducive to the development of the project. Approximately 6 inches to 3 feet of fill material was encountered within portions of the site. The fill material predominately consisted of silty sand. The thickness and extent of fill material was determined based on limited test borings and visual observation. Thicker fill may be present at the site. Limited testing was performed on the fill soils during the time of our field and laboratory investigations. The limited testing indicates that the fill soils had varying strength characteristics ranging from loosely placed to compacted. Therefore, it is recommended the fill soils be excavated and recompacted. The fill material should be moisture-conditioned as necessary and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Prior to fill placement Krazan & Associates, Inc. should inspect the bottom of the excavation to verify no additional removal will be required. In order to reduce the potential for differential settlement and provide uniform support for the planned structures, it is recommended that following stripping, fill removal operations, and demolition activities, the upper 12 inches of exposed subgrade within proposed building areas be excavated, worked until uniform and free from large clods, moisture-conditioned as necessary, and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Over-excavation should extend to a minimum of 5 feet beyond proposed footing lines. The excavation should be backfilled with Engineered Fill, compacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Prior to fill placement, Krazan & Associates, Inc. should inspect the bottom of the excavation to verify no additional removal will be required. Presently, the site is utilized as agricultural land. An orchard occupies portions of the site. A canal trends through portions of the site. Associated with these developments are buried structures, such as utility lines and irrigation lines that trend along the edges of the site and may extend into portions of the site. Demolition activities should include proper removal of any buried structures encountered during construction. Any buried structures or utilities encountered during construction should be properly removed and/or relocated. It is suspected that demolition activities of the existing pavement and related structures will disturb the upper soils. Following demolition activities, the exposed subgrade should be cleaned to firm native ground. The resulting excavation should be backfilled with Engineered Fill, compacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. An irrigation canal trends roughly northeast to southwest across the site. All deleterious materials and loose soils should be removed from the canal and the resulting excavation should be cleaned to firm native soil and backfilled with Engineered Fill compacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Sandy soil conditions were encountered at the site. These cohesionless soils have a tendency to cave in trench wall excavations. Shoring or sloping back trench sidewalls may be required within these sandy
soils. After completion of the recommended site preparation, the site should be suitable for shallow footing support. The proposed structure footings may be designed utilizing an allowable bearing pressure of 2,500 psf for dead-plus-live loads. Footings should have a minimum embedment of 18 inches. #### Groundwater Influence on Structures/Construction Based on our findings and historical records, it is not anticipated that groundwater will rise within the zone of structural influence or affect the construction of foundations and pavements for the project. However, if earthwork is performed during or soon after periods of precipitation, the subgrade soils may become saturated, "pump," or not respond to densification techniques. Typical remedial measures include: discing and aerating the soil during dry weather; mixing the soil with dryer materials; removing and replacing the soil with an approved fill material; or mixing the soil with an approved lime or cement product. Our firm should be consulted prior to implementing remedial measures to observe the unstable subgrade conditions and provide appropriate recommendations. #### Site Preparation General site clearing should include removal of vegetation; asphalt; debris; existing utilities; structures including foundations; basement walls and floors; existing stockpiled soil; trees and associated root systems; rubble; rubbish; and any loose and/or saturated materials. Site stripping should extend to a minimum depth of 2 to 4 inches, or until all organics in excess of 3 percent by volume are removed. Deeper stripping may be required in localized areas. These materials will not be suitable for use as Engineered Fill. However, stripped topsoil may be stockpiled and reused in landscape or non-structural areas. Approximately 6 inches to 3 feet of fill material was encountered within portions of the site. The fill material predominately consisted of silty sand. The thickness and extent of fill material was determined based on limited test borings and visual observation. Thicker fill may be present at the site. Limited testing was performed on the fill soils during the time of our field and laboratory investigations. Preliminary testing on the fill material indicates that the fill soils ranged from loosely placed to compacted. Therefore, it is recommended that the fill soils be excavated and stockpiled so that the native soils can be properly prepared. The fill material should be moisture-conditioned as necessary and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Prior to fill placement Krazan & Associates, Inc. should inspect the bottom of the excavation to verify no additional removal will be required. Several structures are located within the project site vicinity. In addition, the site is presently utilized as agricultural land. Furthermore, a canal trends through portions of the site. Associated with these developments are buried structures, such as utility lines and irrigation lines that may extend into portions of the site. Demolition activities should include proper removal of any buried structures. Any surface or buried structures including utilities encountered during construction should be properly removed and/or relocated. The resulting excavations should be cleaned to firm native ground and backfilled with Engineered Fill, compacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Excavations, depressions, or soft and pliant areas extending below planned finish subgrade level should be cleaned to firm undisturbed soil, and backfilled with Engineered Fill. In general, any septic tanks, debris pits, cesspools, or similar structures should be entirely removed. Concrete footings should be removed to an equivalent depth of at least 3 feet below proposed footing elevations or as recommended by the Soils Engineer. Any other buried structures should be removed in accordance with the recommendations of the Soils Engineer. The resulting excavations should be backfilled with Engineered Fill. An irrigation canal trends roughly northeast to southwest across the site. All deleterious materials and loose soils should be removed from the canal and the resulting excavation should be cleaned to firm native soil and backfilled with Engineered Fill compacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Following stripping, fill removal operations, and demolition activities, the exposed subgrade in exterior flatwork and pavement areas should be excavated/scarified to a depth of at least 12 inches, worked until uniform and free from large clods, moisture-conditioned as necessary and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Limits of recompaction should extend 2 feet beyond the edge of pavements or flatwork. This compaction effort should stabilize the surface soils and locate any unsuitable or pliant areas not found during our field investigation. In order to reduce the potential for differential settlement and provide uniform support for the planned structures, it is recommended that following stripping, fill removal operations, and demolition activities, the upper 12 inches of the exposed subgrade within the proposed building areas be excavated, worked until uniform and free from large clods, moisture-conditioned as necessary, and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Over-excavation should extend to a minimum of 5 feet beyond proposed footing lines. The excavation should be backfilled with Engineered Fill, compacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. Prior to fill placement, the bottom of the excavation should be proofrolled and observed by Krazan & Associates, Inc. to verify stability. Soft or pliant areas should be excavated to firm native grade. The upper soils, during wet winter months, become very moist due to the absorptive characteristics of the soil. Earthwork operations performed during winter months may encounter very moist unstable soils, which may require removal to grade a stable building foundation. Project site winterization consisting of placement of aggregate base and protecting exposed soils during the construction phase should be performed. A representative of our firm should be present during all site clearing and grading operations to test and observe earthwork construction. This testing and observation is an integral part of our service as acceptance of earthwork construction is dependent upon compaction of the material and the stability of the material. The Soils Engineer may reject any material that does not meet compaction and stability requirements. Further recommendations of this report are predicated upon the assumption that earthwork construction will conform to recommendations set forth in this section and the Engineered Fill section. #### **Engineered Fill** The upper on-site native soils and fill material predominately consist of silty sand, sandy silt and sand. These soils will be suitable for reuse as Engineered Fill, provided they are cleansed of excessive organics and debris. The proposed materials specified for Engineered Fill are suitable for most applications with the exception of exposure to erosion. Project site winterization and protection of exposed soils during the construction phase should be the sole responsibility of the Contractor, since he has complete control of the project site at that time. Imported Fill material should be predominately non-expansive granular material with a plasticity index less than 10 and a UBC Expansion Index less than 15. Imported Fill should be free from rocks and clods greater than 4 inches in diameter. All Imported Fill material should be submitted to the Soils Engineer for approval at least 48 hours prior to delivery at the site. Fill soils should be placed in lifts approximately 6 inches thick, moisture-conditioned as necessary, and compacted to achieve at least 90 percent maximum density based on ASTM Test Method D1557. Additional lifts should not be placed if the previous lift did not meet the required dry density or if soil conditions are not stable. #### **Drainage and Landscaping** The ground surface should slope away from building pad and pavement areas toward appropriate drop inlets or other surface drainage devices. In accordance with Section 1804 of the 2016 California Building Code, it is recommended that the ground surface adjacent to foundations be sloped a minimum of 5 percent for a minimum distance of 10 feet away from structures, or to an approved alternative means of drainage conveyance. Swales used for conveyance of drainage and located within 10 feet of foundations should be sloped a minimum of 2 percent. Impervious surfaces, such as pavement and exterior concrete flatwork, within 10 feet of building foundations should be sloped a minimum of 1 percent away from the structure. Drainage gradients should be maintained to carry all surface water to collection facilities and off-site. These grades should be maintained for the life of the project. #### **Utility Trench Backfill** Utility trenches should be excavated according to accepted engineering practices following OSHA (Occupational Safety and Health Administration) standards by a Contractor experienced in such work. The responsibility for the safety of open trenches should be borne by the Contractor. Traffic and vibration adjacent to trench walls should be reduced; cyclic wetting and drying of excavation side slopes should be avoided. Depending upon the location and depth of some utility trenches, groundwater flow into open excavations could be experienced, especially during or shortly following periods of precipitation. Sandy and gravelly soil conditions were encountered at the site. These cohesionless soils have a tendency to cave in trench wall excavations. Shoring or sloping
back trench sidewalls may be required within these sandy and gravelly soils. Utility trench backfill placed in or adjacent to buildings and exterior slabs should be compacted to at least 90 percent of maximum density based on ASTM Test Method D1557. The utility trench backfill placed in pavement areas should be compacted to at least 90 percent of maximum density based on ASTM Test Method D1557. Pipe bedding should be in accordance with pipe manufacturer's recommendations. The Contractor is responsible for removing all water-sensitive soils from the trench regardless of the backfill location and compaction requirements. The Contractor should use appropriate equipment and methods to avoid damage to the utilities and/or structures during fill placement and compaction. #### Foundations - Conventional After completion of the recommended site preparation, the site should be suitable for shallow footing support. The proposed structures may be supported on a shallow foundation system bearing on undisturbed native soils or Engineered Fill. Spread and continuous footings with a minimum embedment depth of 18 inches supported on a minimum of 12 inches of Engineered Fill can be designed for the following maximum allowable soil bearing pressures: | Load | Allowable Loading | |---|-------------------| | Dead Load Only | 1,875 psf | | Dead-Plus-Live Load | 2,500 psf | | Total Load, including wind or seismic loads | 3,325 psf | Spread and continuous footings with a minimum embedment depth of 12 inches supported on a minimum of 12 inches of Engineered Fill can be designed for the following maximum allowable soil bearing pressures: | Load | Allowable Loading | |---|-------------------| | Dead Load Only | 1,500 psf | | Dead-Plus-Live Load | 2,000 psf | | Total Load, including wind or seismic loads | 2,650 psf | The footings should have a minimum embedment depth of 12 inches below pad subgrade (soil grade) or adjacent exterior grade, whichever is lower. Footings should have a minimum width of 12 inches, regardless of load. The total settlement caused by static loads is not expected to exceed 1 inch. Differential settlement associated with static loads should be less than ½ inch. Most of the movement is expected to occur during construction as the loads are applied. However, additional post-construction movement may occur if the foundation soils are flooded or saturated. Based on the soil liquefaction analysis performed within the site, the estimated total seismic-induced settlement is not expected to exceed 1½ inches. Differential settlement caused by a seismic event is estimated to be less than ¾ inch. The anticipated differential settlement is estimated over 100 feet. The seismic settlements would develop if liquefaction of the underlying saturated subsoils were to occur during a seismic event. Resistance to lateral footing displacement can be computed using an allowable friction factor of 0.4 acting between the base of foundations and the supporting subgrade. Lateral resistance for footings can alternatively be developed using an equivalent fluid passive pressure of 350 pounds per cubic foot acting against the appropriate vertical footing faces. The frictional and passive resistance of the soil may be combined without reduction in determining the total lateral resistance. A ½ increase in the above value may be used for short duration, wind, or seismic loads. #### Floor Slabs and Exterior Flatwork In areas where moisture-sensitive floor coverings will be included, concrete slab-on-grade floors should be underlain by a water vapor retarder. The water vapor retarder should be installed in accordance with accepted engineering practice. The water vapor retarder should consist of a vapor retarder sheeting underlain by a minimum of 3 inches of compacted, clean, gravel of ¾-inch maximum size. To aide in concrete curing an optional 2 to 4 inches of granular fill may be placed on top of the vapor retarder. The granular fill should consist of damp clean sand with at least 10 to 30 percent of the sand passing the 100 sieve. The sand should be free of clay, silt, or organic material. Rock dust which is manufactured sand from rock crushing operations is typically suitable for the granular fill. This granular fill material should be compacted. The exterior floors should be poured separately in order to act independently of the walls and foundation system. All fills required to bring the building pads to grade should be Engineered Fills. Moisture within the structure may be derived from water vapors, which were transformed from the moisture within the soils. This moisture vapor can travel through the vapor membrane and penetrate the slab-on-grade. This moisture vapor penetration can affect floor coverings and produce mold and mildew in the structure. To reduce moisture vapor intrusion, it is recommended that a vapor retarder be installed. It is recommended that the utility trenches within the structure be compacted, as specified in our report, to reduce the transmission of moisture through the utility trench backfill. Special attention to the immediate drainage and irrigation around the building is recommended. Positive drainage should be established away from the structure and should be maintained throughout the life of the structure. Ponding of water should not be allowed adjacent to the structure. Over-irrigation within landscaped areas adjacent to the structure should not be performed. In addition, ventilation of the structure (i.e. ventilation fans) is recommended to reduce the accumulation of interior moisture. #### **Lateral Earth Pressures and Retaining Walls** Walls retaining horizontal backfill and capable of deflecting a minimum of 0.1 percent of its height at the top may be designed using an equivalent fluid active pressure of 31 pounds per square foot per foot of depth. Walls that are incapable of this deflection or walls that are fully constrained against deflection may be designed for an equivalent fluid at-rest pressure of 52 pounds per square foot per foot per depth. Expansive soils should not be used for backfill against walls. The wedge of non-expansive backfill material should extend from the bottom of each retaining wall outward and upward at a slope of 2:1 (horizontal to vertical) or flatter. The stated lateral earth pressures do not include the effects of hydrostatic water pressures generated by infiltrating surface water that may accumulate behind the retaining walls; or loads imposed by construction equipment, foundations, or roadways. All of the above earth pressures are unfactored and are, therefore, not inclusive of factors of safety. During grading and backfilling operations adjacent to any walls, heavy equipment should not be allowed to operate within a lateral distance of 5 feet from the wall or within a lateral distance equal to the wall height, whichever is greater, to avoid developing excessive lateral pressures. Within this zone, only hand operated equipment ("whackers," vibratory plates, or pneumatic compactors) should be used to compact the backfill soils. #### R-Value Test Results and Pavement Design Two subgrade soil samples were obtained from the project site for R-value testing at the locations shown on the attached site plan. The samples were tested in accordance with the State of California Materials Manual Test Designation 301. Results of the tests are as follows: | Sample | Depth | Description | R-Value at Equilibrium | |--------|--------|-----------------|------------------------| | 1 | 12-24" | Silty Sand (SM) | 59 | | 2 | 12-24" | Silty Sand (SM) | 58 | The test results are moderate and indicate good subgrade support characteristics under dynamic traffic loads. The following table shows the recommended pavement sections for various traffic indices. | Traffic Index | Asphaltic Concrete | Class II Aggregate Base* | Compacted Subgrade** | |---------------|--------------------|--------------------------|----------------------| | 4.0 | 2.0" | 4.0" | 12.0" | | 4.5 | 2.5" | 4.0" | 12.0" | | 5.0 | 2.5" | 4.0" | 12.0" | | 5.5 | 3.0" | 4.0" | 12.0" | |-----|------|------|-------| | 6.0 | 3.0" | 4.0" | 12.0" | | 6.5 | 3.5" | 4.0" | 12.0" | | 7.0 | 4.0" | 4.0" | 12.0" | | 7.5 | 4.0" | 4.0" | 12.0" | ^{* 95%} compaction based on ASTM Test Method D1557 or CAL 216 If traffic indices are not available, an estimated (typical value) index of 4.5 may be used for light automobile traffic, and an index of 7.0 may be used for light truck traffic. The following recommendations are for light-duty and heavy-duty Portland Cement Concrete Pavement Sections based on the design procedures developed by the Portland Cement Association. #### PORTLAND CEMENT PAVEMENT LIGHT DUTY | Traffic Index | Portland Cement Concrete*** | Class II Aggregate Base* | Compacted Subgrade** | |---------------|-----------------------------|--------------------------|----------------------| | 4.5 | 5.0" | | 12.0" | #### HEAVY DUTY | Traffic Index | Portland Cement Concrete*** | Class II Aggregate Base* | Compacted Subgrade** | |---------------|-----------------------------|--------------------------|----------------------| | 7.0 | 6.5" | _ | 12.0" | * 95% compaction based on ASTM Test Method D1557 or CAL 216 ** 90% compaction based on ASTM Test Method D1557 or CAL 216 ***Minimum compressive strength of 3000 psi As indicated previously, fill material is located on the site. It is recommended that any uncertified fill material encountered within pavement areas be removed and/or recompacted. The fill material should be moisture-conditioned to near optimum moisture and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. As an alternative, the Owner may elect not to recompact the existing fill within paved areas. However, the Owner should be aware that the paved areas may settle, which may require annual maintenance. At a minimum,
it is recommended that the upper 12 inches of subgrade soil be moisture-conditioned as necessary and recompacted to a minimum of 90 percent of maximum density based on ASTM Test Method D1557. #### Seismic Parameters - 2016 California Building Code The Site Class per Section 1613 of the 2016 California Building Code (2016 CBC) and Table 20.3-1 of ASCE 7-10 is based upon the site soil conditions. It is our opinion that a Site Class D is most consistent with the subject site soil conditions. For seismic design of the structures based on the seismic provisions of the 2016 CBC, we recommend the following parameters: ^{** 90%} compaction based on ASTM Test Method D1557 or CAL 216 | Seismic Item | Value | CBC Reference | |---------------------------------|-------|--------------------| | Site Class | D | Section 1613.3.2 | | Site Coefficient Fa | 1.187 | Table 1613.3.3 (1) | | S ₈ | 0.781 | Section 1613.3.1 | | S _{MS} | 0.928 | Section 1613.3.3 | | S _{DS} | 0.619 | Section 1613.3.4 | | Site Coefficient F _v | 1.792 | Table 1613.3.3 (2) | | S ₁ | 0.304 | Section 1613.3.1 | | S _{M1} | 0.545 | Section 1613.3.3 | | S _{D1} | 0.363 | Section 1613.3.4 | #### **Soil Cement Reactivity** Excessive sulfate in either the soil or native water may result in an adverse reaction between the cement in concrete (or stucco) and the soil. HUD/FHA and UBC have developed criteria for evaluation of sulfate levels and how they relate to cement reactivity with soil and/or water. Soil samples were obtained from the site and tested in accordance with State of California Materials Manual Test Designation 417. The sulfate concentrations detected from these soil samples were less than 150 ppm and are below the maximum allowable values established by HUD/FHA and UBC. Therefore, no special design requirements are necessary to compensate for sulfate reactivity with the cement. #### **Compacted Material Acceptance** Compaction specifications are not the only criteria for acceptance of the site grading or other such activities. However, the compaction test is the most universally recognized test method for assessing the performance of the Grading Contractor. The numerical test results from the compaction test cannot be used to predict the engineering performance of the compacted material. Therefore, the acceptance of compacted materials will also be dependent on the stability of that material. The Soils Engineer has the option of rejecting any compacted material regardless of the degree of compaction if that material is considered to be unstable or if future instability is suspected. A specific example of rejection of fill material passing the required percent compaction is a fill which has been compacted with an in situ moisture content significantly less than optimum moisture. This type of dry fill (brittle fill) is susceptible to future settlement if it becomes saturated or flooded. #### **Testing and Inspection** A representative of Krazan & Associates, Inc. should be present at the site during the earthwork activities to confirm that actual subsurface conditions are consistent with the exploratory fieldwork. This activity is an integral part of our service, as acceptance of earthwork construction is dependent upon compaction testing and stability of the material. This representative can also verify that the intent of these recommendations is incorporated into the project design and construction. Krazan & Associates, Inc. will not be responsible for grades or staking, since this is the responsibility of the Prime Contractor. #### **LIMITATIONS** Soils Engineering is one of the newest divisions of Civil Engineering. This branch of Civil Engineering is constantly improving as new technologies and understanding of earth sciences advance. Although your site was analyzed using the most appropriate and most current techniques and methods, undoubtedly there will be substantial future improvements in this branch of engineering. In addition to advancements in the field of Soils Engineering, physical changes in the site, either due to excavation or fill placement, new agency regulations, or possible changes in the proposed structure after the soils report is completed may require the soils report to be professionally reviewed. In light of this, the Owner should be aware that there is a practical limit to the usefulness of this report without critical review. Although the time limit for this review is strictly arbitrary, it is suggested that 2 years be considered a reasonable time for the usefulness of this report. Foundation and earthwork construction is characterized by the presence of a calculated risk that soil and groundwater conditions have been fully revealed by the original foundation investigation. This risk is derived from the practical necessity of basing interpretations and design conclusions on limited sampling of the earth. The recommendations made in this report are based on the assumption that soil conditions do not vary significantly from those disclosed during our field investigation. If any variations or undesirable conditions are encountered during construction, the Soils Engineer should be notified so that supplemental recommendations may be made. The conclusions of this report are based on the information provided regarding the proposed construction. If the proposed construction is relocated or redesigned, the conclusions in this report may not be valid. The Soils Engineer should be notified of any changes so the recommendations may be reviewed and re-evaluated. This report is a Geotechnical Engineering Investigation with the purpose of evaluating the soil conditions in terms of foundation design. The scope of our services did not include any Environmental Site Assessment for the presence or absence of hazardous and/or toxic materials in the soil, groundwater, or atmosphere; or the presence of wetlands. Any statements, or absence of statements, in this report or on any boring log regarding odors, unusual or suspicious items, or conditions observed, are strictly for descriptive purposes and are not intended to convey engineering judgment regarding potential hazardous and/or toxic assessment. The geotechnical engineering information presented herein is based upon professional interpretation utilizing standard engineering practices and a degree of conservatism deemed proper for this project. It is not warranted that such information and interpretation cannot be superseded by future geotechnical engineering developments. We emphasize that this report is valid for the project outlined above and should not be used for any other sites. If you have any questions or if we may be of further assistance, please do not hesitate to contact our office at (209) 572-2200. Respectfully submitted, KRAZAN & ASSOCIATES, INC. Steve Nelson Project Engineer David R. Jarosz, I Managing Engineer RGE No. 2698/RCE No. 60185 SN/DRJ:ht ▲ APPROXIMATE R-VALUE LOCATION | SITE MAP | Scale:
NTS | Date:
Sept. 2019 | | |------------------------------------|-----------------------|---------------------|--| | Light Industrial Development | Drawn by:
HT | Approved by:
DJ | | | Bird Street Livingston, California | Project No. 072-19046 | Figure No. | | #### **APPENDIX A** #### FIELD AND LABORATORY INVESTIGATIONS #### Field Investigation The field investigation consisted of a surface reconnaissance and a subsurface exploratory program. Six 4½-inch to 6½-inch exploratory borings were advanced. The boring locations are shown on the site plan. The soils encountered were logged in the field during the exploration and, with supplementary laboratory test data, are described in accordance with the Unified Soil Classification System. Modified standard penetration tests and standard penetration tests were performed at selected depths. These tests represent the resistance to driving a 2½-inch and 1½-inch diameter split barrel sampler, respectively. The driving energy was provided by a hammer weighing 140 pounds falling 30 inches. Relatively undisturbed soil samples were obtained while performing this test. Bag samples of the disturbed soil were obtained from the auger cuttings. The modified standard penetration tests are identified in the sample type on the boring logs with a full shaded in block. The standard penetration tests are identified in the sample type on the boring logs with half of the block shaded. All samples were returned to our Clovis laboratory for evaluation. #### **Laboratory Investigation** The laboratory investigation was programmed to determine the physical and mechanical properties of the foundation soil underlying the site. Test results were used as criteria for determining the engineering suitability of the surface and subsurface materials encountered. In-situ moisture content, dry density, consolidation, direct shear, and sieve analysis tests were completed for the undisturbed samples representative of the subsurface material. Atterberg limits and R-value tests were completed for select bag samples obtained from the auger cuttings. These tests, supplemented by visual observation, comprised the basis for our evaluation of the site material. The logs of the exploratory borings and laboratory determinations are presented in this Appendix. # UNIFIED SOIL CLASSIFICATION SYSTEM | | | IFICATION AND SYMBOL CHART | |--|--------------|--| | | | RSE-GRAINED SOILS | | (more than | - | erial is larger than No. 200 sieve size.) | | | Clean | Gravels (Less than 5% fines) | | GRAVELS | GW | Well-graded gravels, gravel-sand mixtures, little or no fines | | More than 50% of coarse | SO GP | Poorly-graded gravels, gravel-sand mixtures, little or no fines | | fraction larger | Gravel | s with fines (More than 12% fines) | | than No. 4 sieve size | GM | Slity gravels,
gravel-sand-slit mixtures | | | GC | Clayey gravels, gravel-sand-clay mixtures | | allen nyar kira nya mana ilah diaganan arang diaganan er | Clean | Sands (Less than 5% fines) | | GANDO | SW | Well-graded sands, gravelly sands,
little or no fines | | SANDS
50% or more
of coarse | SP | Poorly graded sands, gravelly sands, little or no fines | | fraction smaller | Sands | with fines (More than 12% fines) | | than No. 4
sleve size | SM | Slity sands, sand-slit mixtures | | | sc | Clayey sands, sand-clay mixtures | | (50% or m | | GRAINED SOILS
fal is smaller than No. 200 sieve size.) | | SILTS | ML | Inorganic slits and very fine sands, rock
flour, slity of clayey fine sands or clayey
slits with slight plasticity | | AND
CLAYS
Liquid limit
less than | CL | Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays | | 50% | E or | Organic slits and organic slity clays of low plasticity | | SILTS
AND | МН | Inorganic silts, micaceous or
diatomaceous fine sandy or silty solls,
elastic silts | | CLAYS Liquid limit 50% | СН | Inorganic clays of high plasticity, fat clays | | or greater | ОН | Organic clays of medium to high plasticity, organic sits | | HIGHLY
ORGANIC
SOILS | 24
5 2 PT | Peat and other highly organic soils | | Description | Blows per Foot | |--------------|----------------| | Granul | ar Soils | | Very Loose | < 5 | | Loose | 5-15 | | Medium Dense | 16 – 40 | | Dense | 41 – 65 | | Very Dense | > 65 | | Cohesi | ve Soils | | Very Soft | < 3 | | Soft | 3-5 | | Firm | 6-10 | | Stiff | 11-20 | | Very Stiff | 21 – 40 | | Hard | > 40 | | GRAIN SIZE CLASSIFICATION | | | | | | | | |---------------------------|---------------------|------------------------------|--|--|--|--|--| | Grain Type | Standard Sieve Size | Grain Size in
Millimeters | | | | | | | Boulders | Above 12 inches | Above 305 | | | | | | | Cobbles | 12 to 13 inches | 305 to 76.2 | | | | | | | Gravel | 3 inches to No. 4 | 76.2 to 4.76 | | | | | | | Coarse-grained | 3 to ¾ inches | 76.2 to 19.1 | | | | | | | Fine-grained | ¾ inches to No. 4 | 19.1 to 4.76 | | | | | | | Sand | No. 4 to No. 200 | 4.76 to 0.074 | | | | | | | Coarse-grained | No. 4 to No. 10 | 4.76 to 2.00 | | | | | | | Medium-grained | No. 10 to No. 40 | 2.00 to 0.042 | | | | | | | Fine-grained | No. 40 to No. 200 | 0.042 to 0.074 | | | | | | | Silt and Clay | Below No. 200 | Below 0.074 | | | | | | Initial: None **Project:** Light Industrial Development Client: QK Location: Bird Street, Livingston, California Depth to Water> **Project No:** 072-19046 Figure No.: A-1 Logged By: R. Alexander At Completion: None | | SUBSURFACE PROFILE SAMPLE | | | | | kiri ada ayka anna kan musi ka kirikada a Sirkina ay kasakiri aya anna kakaya ja'ay garama ay rayyaya | | *************************************** | | | |------------|---------------------------|---|-------------------|--|------|---|---|---|---|--| | Depth (ft) | Symbol | Description | Dry Density (pcf) | Moisture (%) | Туре | Blows/ft. | Penetration Test
blows/ft | Water Content (%) 10 20 30 40 | | | | 0 | Service reprint | Ground Surface | | elinkuluk osa jitalah janakan dalah sa | | | er die bestehn von werde von der verden der die der Ottober von der der verden der der der der der der der der
Der verden der der verden der | | | and the second | | 2- | | SILTY SAND (SM) Very loose, fine- to medium-grained; light brown, damp, drills easily Medium dense below 1 foot | 106.5 | 0.8 | / | 20 | | | | And the second s | | 4- | | | | | | | | | | | | 6 | | | 103.5 | 1.8 | | 16 | | | | | | 8- | | SAND (SP) | | | | | | | | | | 10 | | Medium dense, fine- to coarse-grained; tan, damp, drills easily | 96.3 | 3.5 | | 17 | | | | | | 12- | | | | | | | | | | Security and the Agricultural Security of the | | 14- | | CLAYEY SILTY SAND (SM/SC) Medium dense, fine- to medium-grained; brown, moist, drills easily | | | | | | charmanic and charles and charles | | | | 16 | | | 127.3 | 11.9 | | 17 | | | | | | 18 | | SILTY SAND (SM) Medium dense, fine- to medium-grained; brown, damp, drills easily | | | | | | | | | | 20 | | | | | | | 77 | L | 1 | A | **Drill Method:** Solid Flight Drill Rig: CME 45B **Krazan and Associates** 62 Hole Size: 4½ Inches **Drill Date: 8-21-19** Elevation: 25 Feet Sheet: 1 of 2 **Driller:** Brent Snyder Initial: None **Project:** Light Industrial Development Client: QK Location: Bird Street, Livingston, California Depth to Water> **Project No:** 072-19046 Figure No.: A-1 Logged By: R. Alexander **At Completion:** None | | | SUBSURFACE PROFILE | | SAM | IPLE | | | | | | (************************************ | |------------|--------|---|-------------------|---
--|--|------------------------------|--|--
--|--| | Depth (ft) | Symbol | Description | Dry Density (pcf) | Moisture (%) | Туре | Blows/ft. | Penetration Test
blows/ft | Wate | er Co
20 | ntent | | | | | | 118.5 | 9.4 | | 23 | À | | | And the second s | | | 22- | | SAND (SP) Medium dense, fine- to coarse-grained; tan, damp, drills easily | | | | | | | | | | | 26 | | End of Borehole | | | | | | | | Company of the compan | | | 28- | | | | | adepartment of the second t | | | | | | de margalis et anticología de la composito | | 30 | | | | an-al-a-dependent gester und des anders | A. P. Company of the Assessment of the Company t | Agramatian referencia de principa de proprio | | | | | | | 32 | | | | | | | | | | | And the second s | | 34- | | | | | | | | | and A Commoder of Principles | The second secon | | | 36 | | | | | | | | and the second s | material contract of the Annal t | | Comment of the Commen | | 38- | | | | | | | | And the second second | | | Parameter Annual Parame | | 40 | | | | | | | | | | | | Drill Method: Solid Flight Drill Rig: CME 45B Driller: Brent Snyder **Krazan and Associates** **Drill Date: 8-21-19** Hole Size: 4½ Inches Elevation: 25 Feet Project: Light Industrial Development Client: QK Figure No.: A-2 Location: Bird Street, Livingston, California Logged By: R. Alexander Initial: None Depth to Water> At Completion: None SAMPLE SUBSURFACE PROFILE **Penetration Test** blows/ft Water Content (%) **Drill Method:** Solid Flight Krazan and Associates Drill Rig: CME 45B **Driller:** Brent Snyder **Drill Date: 8-21-19** Hole Size: 41/2 Inches **Project No: 072-19046** Elevation: 10 Feet Initial: None **Project:** Light Industrial Development Client: QK Location: Bird Street, Livingston, California Depth to Water> **Project No: 072-19046** Figure No.: A-3 Logged By: R. Alexander At Completion: None Drill Method: Hollow Stem Drill Rig: CME 45B **Driller:** Brent Snyder **Krazan and Associates** **Drill Date: 8-21-19** Hole Size: 61/2 Inches **Elevation:** 50 Feet Project: Light Industrial Development Client: QK Location: Bird Street, Livingston, California Depth to Water> Initial: None **Project No: 072-19046** Figure No.: A-3 Logged By: R. Alexander At Completion: None **Drill Method:** Hollow Stem Drill Rig: CME 45B **Driller:** Brent Snyder Krazan and Associates **Drill Date: 8-21-19** Hole Size: 61/2 Inches Elevation: 50 Feet Initial: None **Project:** Light Industrial Development Client: QK Location: Bird Street, Livingston, California Depth to Water> **Project No: 072-19046** Figure No.: A-3 Logged By: R. Alexander At Completion: None **Drill Method:** Hollow Stem Drill Rig: CME 45B **Driller:** Brent Snyder g. Offic 40D **Krazan and Associates** **Drill Date: 8-21-19** Hole Size: 61/2 Inches Elevation: 50 Feet Initial: None **Project:** Light Industrial Development Client: QK Location: Bird Street, Livingston, California Depth to Water> **Project No:** 072-19046 Figure No.: A-4 Logged By: R. Alexander **At Completion:** None | | | SUBSURFACE PROFILE | | SAM | IPLE | ************* | | | | | |------------|--------|--|--|----------------------------
--|---|--|-------------------|--|--| | Depth (ft) | Symbol | Description | Dry Density (pcf) | Moisture (%) | Туре | Blows/ft. | Penetration Test
blows/ft
20 40 60 | Water Content (%) | | | | 0 | ыныныш | Ground Surface | en de servicio de la colonia de la compansió de la colonia | erica kapin bega Agrico ya | gana nejstelet som ikusom | | Bernard Alfrice (1807-1805) (Alfrica) of Antology A | | | | | 2- | | SILTY SAND (SM) Very loose, fine- to medium-grained; light brown, damp, drills easily Loose below 1 foot | 108.7 | 1.3 | | 10 | | | | | | 4- | | | | | | | | | | | | 6- | | | 106.9 | 5.9 | | 14 | | | | | | 8 | | | | | | | | | | | | 10 | | SILTY SAND (SM) Very dense, fine- to medium-grained, weakly cemented; brown, damp, drills hard | 83.7 | 14.4 | | 50+ | | | | | | 12- | | SILTY SAND (SM) Medium dense, fine- to medium-grained; brown, damp, drills easily | | | | | | | | | | 16- | | End of Borehole | | | | epide principal approximation of the contract | | | | | | 18- | | | | | Applicate the street of st | | | | | | | 20 | | | | | | | | | | | **Drill Method:** Solid Flight Drill Rig: CME 45B **Driller:** Brent Snyder **Krazan and Associates** Hole Size: 41/2 Inches **Drill Date: 8-21-19** Elevation: 15 Feet Initial: None **Project:** Light Industrial Development Client: QK Location: Bird Street, Livingston, California Depth to Water> **Project No: 072-19046** Figure No.: A-5 Logged By: R. Alexander At Completion: None | This is no more to the first | gainer and an age | SUBSURFACE PROFILE | | SAM | PLE | | | | | | |------------------------------|-------------------|--|-------------------|--------------|--|-----------
--|-------------------|--|--| | Depth (ft) | Symbol | Description | Dry Density (pcf) | Moisture (%) | Туре | Blows/ft. | Penetration Test
blows/ft | Water Content (%) | | | | 0 | anuvuwini | Ground Surface | | | | | teriorimentale in which is the electronic value is, a shade make it management according to slong your shade of the electronic in the electronic in the electronic in the electronic in the electronic interests and el | | | | | 2- | | SILTY SAND (SM) Very loose, fine- to medium-grained; light brown, damp, drills easily Loose below 1 foot Medium dense below 2 feet Brown below 2½ feet | 114.3 | 2.6 | | 28 | | | | | | 6- | | Fine-grained and grayish-brown below 5½ feet | 108.2 | 5.5 | | 20 | | | | | | 8- | | SILTY SAND (SM) Very dense, fine- to medium-grained, weakly cemented; brown, damp, drills firmly | 118.0 | 8.8 | | 50+ | | p | | | | 12
14 | | SILTY SAND (SM) Medium dense, fine- to medium-grained; brown, damp, drills easily | | | | | | | | | | 16 | | SAND (SP) Medium dense, fine- to coarse-grained; tan, damp, drills easily | 105.7 | 4.0 | | 30 | | • | | | | 18 | | | | | | | | | | | | 20- | 2.14 | | 4. | | and the same of th | | and the Libert | | | | Drill Method: Solid Flight Drill Rig: CME 45B **Driller:** Brent Snyder Krazan and Associates Hole Size: 41/2 Inches **Drill Date: 8-21-19** Elevation: 20 Feet Project: Light Industrial Development Client: QK Figure No.: A-6 Location: Bird Street, Livingston, California Depth to Water> Initial: None At Completion: None SAMPLE SUBSURFACE PROFILE **Penetration Test** blows/ft Ory Density (pcf) Water Content (%) Moisture (%) Description Depth (ft) Blows/ft. Symbol Type 20 40 60 10 20 30 40 **Ground Surface** SILTY SAND (SM) Very loose, fine- to medium-grained; light brown, damp, drills easily Medium dense below 1 foot 2 106.1 2.2 28 Fine- to coarse-grained and brown 112.3 2.6 below 5 feet 18 6 8 10 **End of Borehole** 12 14 16 18 20 **Drill Method:** Solid Flight Drill Rig: CME 45B **Driller: Brent Snyder** **Krazan and Associates** **Drill Date: 8-21-19** **Project No: 072-19046** Logged By: R. Alexander Hole Size: 41/2 Inches Elevation: 10 Feet # **Consolidation Test** | Project No | Boring No. & Depth | Date | Soil Classification | |------------|--------------------|-----------|---------------------| | 072-19046 | B4 @ 2-3' | 8/28/2019 | SM | # Shear Strength Diagram (Direct Shear) ASTM D - 3080 / AASHTO T - 236 | Project Number | Boring No. & Depth | Soil Type | Date | |----------------|--------------------|-----------|-----------| | 072-19046 | B3 @ 2-3' | SM | 8/28/2019 | Soil Classification Sample Number # **Plasticity Index of Soils** #### ASTM D4318/AASHTO T89 T90/CT 204 Project: Light Industrial Development Project Number: 072-19046 Date Sampled: 8/21/2019 Tosted By Date Tested: 8/27/2019 Sampled By: RA Tested By: J Mitchell Verified By: J Gruszczynski Sample Number: Sample Location: B3 @ 15-16' Sample Description: ML | | 1 5 7 7 8 5 7 | Plastic Limit | | Liquid Limit | | | |-------------------------------|---------------|---------------|---|--------------|---|--| | Trial Number | 1 | 2 | 3 | 1 | 2 | 3 | | Weight of Wet Soil & Tare (g) | | | | | | | | Weight of Dry Soil & Tare (g) | | | | | | 1 | | Weight of Tare (g) | | | | | | 1 | | Weight of water (g) | | | | | | | | Weight of Dry Soil (g) | | 1 | | | | † | | Water Content (% of dry wt.) | | 1 | | | | 1 | | Number of Blows | | | | | | 1 | Plastic Limit: N/D Liquid Limit: N/D Plasticity Index : NON-PLASTIC Unified Soil Classification: NON-PLASTIC Requirement: Approx. % of Material Retained on # 40 Sieve: Departures from Outlined Procedure: Unusual Conditions, Other Notes: # R - VALUE TEST ASTM D - 2844 / CAL 301 **Project Number** 072-19046 **Project Name** Light Industrial Development Date 8/26/2019 Sample Location/Curve Number RV#1 Soil Classification : SM | TEST | A | В | С | |------------------------------------|-------|-------|-------| | Percent Moisture @ Compaction, % | 9.7 | 10.7 | 10.2 | | Dry Density, lbm/cu.ft. | 119.6 | 120.0 | 120.0 | | Exudation Pressure, psi | 660 | 200 | 380 | | Expansion Pressure, (Dial Reading) | 0 | 0 | 0 | | Expansion Pressure, psf | 0 | 0 | 0 | | Resistance Value R | 66 | 55 | 61 | # R - VALUE TEST ASTM D - 2844 / CAL 301 Project Number : 072-19046 Project Name : Light Industrial Development Date : 8/26/2019 Sample Location/Curve Number : RV#2 Soil Classification : SM | TEST | Α | В | С | |------------------------------------|-------|-------|-------| | Percent Moisture @ Compaction, % | 9.6 | 10.6 | 10.1 | | Dry Density, lbm/cu.ft. | 119.3 | 119.3 | 119.4 | | Exudation Pressure, psi | 460 | 140 | 320 | | Expansion Pressure, (Dial Reading) | 0 | 0 | 0 | | Expansion Pressure, psf | 0 | 0 | 0 | | Resistance Value R | 62 | 53 | 59 | | R Value at 300 PSI Exudation Pressure | 58 | |---|------------------------| | R Value by Expansion Pressure (TI =): 5 | Expansion Pressure nil | #### **APPENDIX B** #### **EARTHWORK SPECIFICATIONS** #### **GENERAL** When the text of the report conflicts with the general specifications in this appendix, the recommendations in the report have precedence. SCOPE OF WORK: These specifications and applicable plans pertain to and include all earthwork associated with the site rough grading, including but not limited to the furnishing of all labor, tools, and equipment necessary for site clearing and grubbing, stripping, preparation of foundation materials for receiving fill, excavation, processing, placement and compaction of fill and backfill materials to the lines and grades shown on the project grading plans, and disposal of excess materials. PERFORMANCE: The Contractor shall be responsible for the satisfactory completion of all earthwork in accordance with the project plans and specifications. This work shall be inspected and tested by a representative of Krazan and Associates, Inc., hereinafter known as the Soils Engineer and/or Testing Agency. Attainment of design grades when achieved shall be certified by the project Civil Engineer. Both the Soils Engineer and the Civil Engineer are the Owner's representatives. If the Contractor should fail to meet the technical or design requirements embodied in this document and on the applicable plans, he shall make the necessary readjustments until all work is deemed satisfactory as determined by both the Soils Engineer and the Civil Engineer. No deviation from these specifications shall be made except upon written approval of the Soils Engineer, Civil Engineer or project Architect. No earthwork shall be performed without the physical presence or approval of the Soils Engineer. The Contractor shall notify the Soils Engineer at least 2 working days prior to the commencement of any aspect of the site earthwork. The Contractor agrees that he shall assume sole and complete responsibility for job site conditions during the course of construction of this project, including safety of all persons and property; that this requirement shall apply continuously and not be limited to normal working hours; and that the Contractor shall defend, indemnify and hold the Owner and the Engineers harmless from any and all liability, real or alleged, in connection with the performance of work on this project, except for liability arising from the sole negligence of the Owner or the Engineers. **TECHNICAL REQUIREMENTS:** All compacted materials shall be densified to a density not less than 90 percent relative compaction based on ASTM Test Method D1557 or CAL-216, as specified in the technical portion of the Soil Engineer's report. The location and frequency of field density tests shall be as determined by the Soils Engineer. The results of these tests and compliance with these specifications shall be the basis upon which satisfactory completion of work will be judged by the Soils Engineer. **SOILS
AND FOUNDATION CONDITIONS:** The Contractor is presumed to have visited the site and to have familiarized himself with existing site conditions and the contents of the data presented in the soil report. The Contractor shall make his own interpretation of the data contained in said report, and the Contractor shall not be relieved of liability under the Contract documents for any loss sustained as a result of any variance between conditions indicated by or deduced from said report and the actual conditions encountered during the progress of the work. **DUST CONTROL:** The work includes dust control as required for the alleviation or prevention of any dust nuisance on or about the site or the borrow area, or off-site if caused by the Contractor's operation either during the performance of the earthwork or resulting from the conditions in which the Contractor leaves the site. The Contractor shall assume all liability, including court costs of codefendants, for all claims related to dust or windblown materials attributable to his work. #### SITE PREPARATION Site preparation shall consist of site clearing and grubbing and the preparations of foundation materials for receiving fill. CLEARING AND GRUBBING: The Contractor shall accept the site in this present condition and shall demolish and/or remove from the area of designated project earthwork all structures, both surface and subsurface, trees, brush, roots, debris, organic matter, and all other matter determined by the Soils Engineer to be deleterious or otherwise unsuitable. Such materials shall become the property of the Contractor and shall be removed from the site. Tree root systems in proposed building areas should be removed to a minimum depth of 3 feet and to such an extent which would permit removal of all roots larger than 1 inch. Tree roots removed in parking areas may be limited to the upper 1½ feet of the ground surface. Backfill of tree root excavations should not be permitted until all exposed surfaces have been inspected and the Soils Engineer is present for the proper control of backfill placement and compaction. Burning in areas which are to receive fill materials shall not be permitted. **SUBGRADE PREPARATION:** Surfaces to receive Engineered Fill, building or slab loads shall be prepared as outlined above, excavated/scarified to a depth of 12 inches, moisture-conditioned as necessary, and compacted to 90 percent relative compaction. Loose soil areas, areas of uncertified fill, and/or areas of disturbed soils shall be moisture-conditioned as necessary and recompacted to 90 percent relative compaction. All ruts, hummocks, or other uneven surface features shall be removed by surface grading prior to placement of any fill materials. All areas which are to receive fill materials shall be approved by the Soils Engineer prior to the placement of any of the fill material. **EXCAVATION:** All excavation shall be accomplished to the tolerance normally defined by the Civil Engineer as shown on the project grading plans. All over-excavation below the grades specified shall be backfilled at the Contractor's expense and shall be compacted in accordance with the applicable technical requirements. FILL AND BACKFILL MATERIAL: No material shall be moved or compacted without the presence of the Soils Engineer. Material from the required site excavation may be utilized for construction site fills provided prior approval is given by the Soils Engineer. All materials utilized for constructing site fills shall be free from vegetation or other deleterious matter as determined by the Soils Engineer. PLACEMENT, SPREADING AND COMPACTION: The placement and spreading of approved fill materials and the processing and compaction of approved fill and native materials shall be the responsibility of the Contractor. However, compaction of fill materials by flooding, ponding, or jetting shall not be permitted unless specifically approved by local code, as well as the Soils Engineer. Both cut and fill areas shall be surface-compacted to the satisfaction of the Soils Engineer prior to final acceptance. **SEASONAL LIMITS:** No fill material shall be placed, spread, or rolled while it is frozen or thawing or during unfavorable wet weather conditions. When the work is interrupted by heavy rains, fill operations shall not be resumed until the Soils Engineer indicates that the moisture content and density of previously placed fill are as specified. #### APPENDIX C #### **PAVEMENT SPECIFICATIONS** 1. **DEFINITIONS** - The term "pavement" shall include asphaltic concrete surfacing, untreated aggregate base, and aggregate subbase. The term "subgrade" is that portion of the area on which surfacing, base, or subbase is to be placed. The term "Standard Specifications": hereinafter referred to is the 2018 Standard Specifications of the State of California, Department of Transportation, and the "Materials Manual" is the Materials Manual of Testing and Control Procedures, State of California, Department of Public Works, Division of Highways. The term "relative compaction" refers to the field density expressed as a percentage of the maximum laboratory density as defined in the applicable tests outlined in the Materials Manual. - 2. SCOPE OF WORK This portion of the work shall include all labor, materials, tools, and equipment necessary for, and reasonably incidental to the completion of the pavement shown on the plans and as herein specified, except work specifically noted as "Work Not Included." - 3. PREPARATION OF THE SUBGRADE The Contractor shall prepare the surface of the various subgrades receiving subsequent pavement courses to the lines, grades, and dimensions given on the plans. The upper 12 inches of the soil subgrade beneath the pavement section shall be compacted to a minimum relative compaction of 90 percent. The finished subgrades shall be tested and approved by the Soils Engineer prior to the placement of additional pavement courses. - 4. UNTREATED AGGREGATE BASE The aggregate base material shall be spread and compacted on the prepared subgrade in conformity with the lines, grades, and dimensions shown on the plans. The aggregate base material shall conform to the requirements of Section 26 of the Standard Specifications for Class 2 material, 1½ inches maximum size. The aggregate base material shall be spread and compacted in accordance with Section 26 of the Standard Specifications. The aggregate base material shall be spread in layers not exceeding 6 inches and each layer of aggregate material course shall be tested and approved by the Soils Engineer prior to the placement of successive layers. The aggregate base material shall be compacted to a minimum relative compaction of 95 percent. - 5. AGGREGATE SUBBASE The aggregate subbase shall be spread and compacted on the prepared subgrade in conformity with the lines, grades, and dimensions shown on the plans. The aggregate subbase material shall conform to the requirements of Section 25 of the Standard Specifications for Class 2 material. The aggregate subbase material shall be compacted to a minimum relative compaction of 95 percent, and it shall be spread and compacted in accordance with Section 25 of the Standard Specifications. Each layer of aggregate subbase shall be tested and approved by the Soils Engineer prior to the placement of successive layers. 6. ASPHALTIC CONCRETE SURFACING - Asphaltic concrete surfacing shall consist of a mixture of mineral aggregate and paving grade asphalt, mixed at a central mixing plant and spread and compacted on a prepared base in conformity with the lines, grades and dimensions shown on the plans. The viscosity grade of the asphalt shall be PG 64-10. The mineral aggregate shall be Type B, ½ inch maximum size, medium grading and shall conform to the requirements set forth in Section 39. The drying, proportioning and mixing of the materials shall conform to Section 39. The prime coat, spreading and compacting equipment and spreading and compacting mixture shall conform to the applicable chapters of Section 39, with the exception that no surface course shall be placed when the atmospheric temperature is below 50° F. The surfacing shall be rolled with a combination of steel wheel and pneumatic rollers, as described in Section 39-6. The surface course shall be placed with an approved self-propelled mechanical spreading and finishing machine. 7. FOG SEAL COAT - The fog seal (mixing type asphaltic emulsion) shall conform to and be applied in accordance with the requirements of Section 37.