

WELCOME TO LIVINGSTON

City of Livingston (Storm Drainage Master Plan

July, 2007 Revised Final Version

TRANSMITTAL

То:	Ms. Donna Kenney, Community Development Dir. City of Livingston 1416 C Street Livingston, CA 95334	
From:	Jim Nelson	
Date:	July 11, 2007	
File:	2004-15B	

Re: Storm Drainage Master Plan – Revised Final Version

Remarks: Enclosed are fifteen (15) copies of the revised final version (labeled Revised Final Version – July, 2007) of the Storm Drainage Master Plan for the City, incorporating your comments regarding the draft version that we submitted to the City a couple of weeks ago.

If you have any questions, please let me know.

Thanks

Jim

Enclosures

Cc: Steve Roberts, Harris & Associates

City of Livingston

STORM DRAINAGE MASTER PLAN

Revised Final Version July, 2007

Prepared by:

and

City of Livingston Storm Drainage Master Plan Revised Final Version July, 2007

TABLE OF CONTENTS

REPORT SECTIONS

1.0	Introduction	1
2.0	Study Area Setting and Description	2
3.0	Existing Drainage Facilities	4
4.0	Hydrology and Drainage Zones	
5.0	Storm Drainage Infrastructure Plan	
6.0	Joint-Use Opportunities and Design Guidelines	
7.0	Funding Alternatives	28
8.0	Impact Fees	31
9.0	Priority Projects	33
10.0	References	34

LIST OF EXHIBITS

Exhibit A	Map Depicting Hydrologic Features, Drainage Zones and Proposed
	Infrastructure Plan
Exhibits A1-A13	B Enlargements of Drainage Zones (A through L and CC)

LIST OF TABLES

Table 1	Impervious Cover Values for Different Land Uses	
Table 2	Curve Numbers by Drainage Zone	
Table 3	Time of Concentration and Tlag Calculation Worksheets	
Table 4	Detention Basin Summary Listing	
Table 5	Rational Method Discharges Generated by 100 Acres	
Table 6	Uniform Flow Capacities for Various Storm Drain Pipe Sizes	
Table 7	Drainage Infrastructure Cost Estimate Summary	
Table 8	Drainage Infrastructure Cost Estimates by Drainage Zones	
Tables 9A & 9B	Storm Drainage Impact Fees	

APPENDIX

FEMA FIRM Panels 175 and 200 Sample MID Drainage Agreement Minutes of Meetings with MID (5-19-04 and 8-2-05) HEC-1 Input/Output

Reports Section

1.0 Introduction

This report is a Storm Drainage Master Plan (SDMP) that describes and presents a recommended master plan for storm drainage facilities that will serve new development areas that are currently located within the City of Livingston's sphere of influence or are likely to be incorporated into the sphere of influence at some point in the foreseeable future. This SDMP also provides recommendations for mitigating nuisance flooding in several problem areas of the existing City urbanized area and for eliminating some of the City's current detention/retention ponds that are considered undesirable due to issues related to aesthetics, environment, and/or maintenance. This SDMP document addresses and provides information with respect to the following:

- Watershed hydrology and peak runoff
- Infrastructure plan for new and retrofitted storm drainage facilities
- Joint-use opportunities and design guidelines for detention basins
- Funding alternatives
- Impact fees pertinent to new development areas
- Priority projects

A previous master plan for storm drainage facilities was prepared by the consulting firm of Lew-Garcia-Davis in December 1992 and was entitled <u>City of Livingston Storm Drain Collection System Study and Master Plan</u>. The new SDMP is a stand alone document that will supercede the prior master plan. This is a revised version of the Final SDMP dated September, 2006 that was previously approved by the City, and incorporates additional land areas to the east of the previously adopted study area limits.

This SDMP is intended to be utilized as a guideline document for the identification of storm drainage facilities needed to serve future land development projects and for the identification of future storm drainage capital improvement projects. In general, new development projects will be required to provide site-specific or project-specific storm drainage solutions that are consistent with the overall infrastructure approach presented in this Storm Drainage Master Plan. The City may allow for a reasonable degree of flexibility to be incorporated into specific design approaches as a part of achieving effective solutions. Any significant modifications to the elements of this Storm Drainage Master Plan must be approved by the City and will require that a formal "Supplement" be adopted by the City Council.

2.0 Study Area Setting and Description

The City of Livingston extends along both sides of Highway 99 in the San Joaquin Valley in the northeast quadrant of Merced County, California. According to the 2000 Census by the U.S. Census Bureau, the City of Livingston has a population of 10,743 people. Based on several factors, the U.S. Census Bureau indicates that this may be an underestimated value. The average annual precipitation for the Livingston area is about 12.1 inches, with the substantial majority of this precipitation generally occurring during the rainy season that extends from November through March. Average annual high temperature ranges from 54 degrees to 94 degrees, and average annual low temperature ranges from 37 degrees to 61 degrees, depending upon the time of year.

This SDMP covers the City's Sphere of Influence area, plus additional future development areas to the west, south and east. The SDMP boundaries are generally defined by the Merced River and Olive Avenue on the north; Washington Boulevard on the west; Westside Boulevard on the south; and Cressey Way on the east. The study area for this SDMP is the same as the study area for the City's current General Plan update. The study area is slightly more than 12 square miles in area and includes a combination of residential, commercial, industrial, institutional, and recreational development, as well as currently undeveloped agricultural land and open space. The SDMP has been prepared under the assumption that the areas within the SDMP boundaries are built out (developed) to the land uses shown on the City's current General Plan update.

The SDMP study area is topographically very flat for the most part, with the majority of elevations ranging from about 105 feet to 140 feet above sea level. Localized higher elevations exist near the northeast boundary of the study area and lower elevations exist in the flood terrace areas adjacent to the Merced River. Much of the topography and drainage descends gradually in a southwesterly direction towards one of many topographic depressions.

The Merced River, which borders the north boundary of the western half of the SDMP study area, retains a floodplain area that was delineated by the Federal Emergency Management Agency (FEMA) per Flood Insurance Rate Map (FIRM) Panels 175 and 200 for Merced County, California and Incorporated Areas (Effective Date: 1995). The floodplain area is represented as Zone A on these maps, indicating that the designation is "approximate" (See Appendix), and is shown as being confined to the river channel and adjacent low lying terrace areas. City representatives have indicated that some areas within the northwest quadrant of the SDMP study area may have previously experienced flooding induced by high stages in the Merced River. Prior to development occurring in

2.0 Study Area Setting and Description (continued)

lower lying portions of the northwest quadrant of the SDMP study area, it is recommended that a detailed hydraulic study be performed to more accurately determine the 100-year floodplain limits for the Merced River. This SDMP addresses local storm drainage needs and issues, and analyses pertinent to the Merced River are outside of the scope of the SDMP.

The SDMP study area is also traversed or bordered by several canals and laterals owned and operated by the Merced Irrigation District (MID). The largest of these MID facilities are the Arena Canal (which traverses through the entire south portion of the SDMP study area) and the Livingston Canal (which extends across areas to the north of the SDMP study area). The Arena Canal eventually drains to Bear Creek, located several miles to the south, and the Livingston Canal drains to the Merced River to the north. Though the primary intended function of the MID canals and laterals has historically been to provide supply water for agricultural users, the MID canals also offer a terminal point of discharge for storm drainage originating from portions of the City's existing development area.

3.0 Existing Drainage Facilities

Storm drainage generated within the City's existing development areas is collected and discharged by a combination of the following facilities and methods:

- Underground storm drains
- Detention and percolation basins
- Limited discharge into City sanitary sewer system facilities
- Discharge into MID canals and laterals, via pump stations

Existing underground storm drains, to the extent known, are represented on Exhibit A. However, information and records identifying the location of existing storm drains serving the City are limited, and the relevant information regarding these facilities depicted on Exhibit A is undoubtedly incomplete.

A commonly applied practice that the City has historically utilized for accommodating storm runoff generated by new development areas has included the construction of local detention basins that intercept and store runoff and discharge it at a reduced rate via pumping into MID canals and laterals. Some of these local detention basins do not discharge into MID facilities, and instead, function as percolation basins (or retention basins). The above practice has resulted in the installation of a large number of local detention basins, many of which the City now considers to be undesirable for a variety of aesthetic, environmental and maintenance reasons. These existing detention basins are depicted on Exhibit A. As a goal in developing this SDMP, the City has expressed a desire to provide for the phasing out of several of these detention basins and to provide for the consolidation of storm drainage from new development areas into a limited number of larger detention basins that will also have an opportunity to be utilized, at least in part, for recreation.

Many properties within the City are governed by Subdivision Drainage Agreements that have been executed with MID. These agreements authorize the discharge of storm runoff into specified MID facilities as long as several special provisions are met. The agreements establish a "per lot" one time connection fee and an annual maintenance fee that is levied via the Merced County property tax bill. Current one time connection fees are \$205 per subdivision lot and \$2,113 per impermeable acre of commercial/commercial office/industrial development. Current annual maintenance fees are \$12.30 per subdivision lot and \$126.76 per impermeable acre of commercial/commercial

3.0 Existing Drainage Facilities (continued)

office/industrial development. These fees are subject to change in the future. Properties currently governed by such agreements with MID are highlighted on Exhibit A and a current prototype Subdivision Drainage Agreement is included in the Appendix.

The City does not currently collect a fee for the maintenance and operation of City-owned storm drainage facilities.

4.0 Hydrology and Drainage Zones

Drainage Zones

In order to develop an effective and manageable master plan for storm drainage facilities within the SDMP study area, it was first necessary to sub-divide the overall SDMP study area into local watersheds, or Drainage Zones. The establishment of these Drainage Zones facilitated the calculation of peak runoff rates and detention storage requirements, determination of storm drainage infrastructure needs and costs, and identification of responsible constituents for the funding of much of the storm drainage infrastructure. In this SDMP, the subdivision of the SDMP study area resulted in the establishment of thirteen (13) Drainage Zones (Drainage Zones A through L and Drainage Zone CC). These Drainage Zones were initially delineated and subsequently refined based on the following factors and considerations:

- Topography
- Land Use Boundaries
- Current land development proposals
- Street alignments and other physical boundaries (such as Highway 99 and the Union Pacific Transportation Company railroad)
- City stated goals of limiting the number of future detention basins and consolidating terminal drainage needs into larger detention facilities that may have a future potential to include recreational elements
- City stated goal of eliminating existing local detention basins and percolations basins (that do not include any joint-use elements), where possible
- Proximity to suitable outfalls for storm drainage, such as MID canals and laterals and the Merced River.

Exhibit A depicts the Drainage Zones that have been established per this SDMP and their sub-basin boundaries, where applicable. The following is a brief description of each Drainage Zone:

Drainage Zone A

Drainage Zone A is the largest proposed Drainage Zone and has its boundaries defined by Robin Avenue on the west, Peach Avenue on the north, Cressey Way (south of Highway 99) on the east, and Westside Boulevard on the south. Drainage Zone A also includes twelve (12) sub-basins. The entire Drainage Zone area is approximately 3.7 square miles and currently consists predominantly of agricultural land. The proposed Ranchwood, Yagi (Del Valle Homes), Somerset 1 and 2, and Peach/Arena developments, plus an unnamed Medium Density Residential development, are located within this Drainage Zone. There is no existing positive storm drainage system serving this Drainage Zone. The Arena Canal runs east-west along the northern boundary of Drainage Zone A, and then extends southerly through the western portion of Drainage Zone A.

Drainage Zone B

Drainage Zone B is approximately 1.47 square miles in area and has its boundaries defined by Washington Boulevard on the west, Flint Avenue (F Street) on the north, Robin Avenue on the east and Westside Boulevard on the south. Similar to Drainage Zone A, the current land use within Drainage Zone B is predominantly agricultural. There is a proposed elementary school site located within this Drainage Zone at the intersection of Peach Avenue and Robin Avenue. There is no positive storm drainage system serving this Drainage Zone. However, the Garibaldi and McCoy Laterals of MID traverse through Drainage Zone B.

Drainage Zone C

Drainage Zone C is approximately 0.39 square miles in area and has its boundaries defined by Robin Avenue on the west, Vinewood Avenue (B Street) on the north, MID's Hammett Lateral and Arena Canal on the east, and Peach Avenue on the south. The Drainage Zone contains several new residential developments, including the following existing subdivisions and subdivisions currently under construction: Monte Cristo subdivisions, Bridgeport Village, Country Glen subdivision, Parkside subdivision, La Tierra, Marabella subdivision and Hhad property development. The existing middle school at the northeast corner of Flint Avenue and Robin Avenue as well as the B Street commercial and

residential project are also a part of this Drainage Zone. There is a centrally located existing joint-use detention basin serving local development within this Drainage Zone.

Drainage Zone D

Drainage Zone D is approximately 0.694 square miles in area and has its boundaries defined by Washington Boulevard on the west, the Merced River and the City's Wastewater Treatment Plant on the north, the alignment of Robin Avenue on the east, and Flint Avenue (F Street) on the south. Under current conditions the land use is predominantly agricultural. Much of this Drainage Zone is overlain by the proposed River Ranch project. There is no positive storm drainage system serving this Drainage Zone.

Drainage Zone E

Drainage Zone E is approximately 0.74 square miles in area and is located northeast of Highway 99; south of the Merced River; and west of Livingston/Cressey Road and Stefani Avenue. This Drainage Zone is primarily occupied by Foster Farms industrial facilities and properties. Existing Foster Farms developments are served by detention/percolation basins. MID's Hammett Lateral extends through this Drainage Zone.

Drainage Zone F

Drainage Zone F is approximately 0.65 square miles in area and has its boundaries defined by Livingston/Cressey Road and Stefani Avenue on the west, Olive Avenue on the north, the alignment of Hunter Road on the east, and Walnut Avenue on the south. This Drainage Zone currently consists of a mix of residential and agricultural land uses, and also includes a degree of institutional and commercial uses. The Drainage Zone includes existing detention or percolation basins within the Harvest Manor and Country Roads subdivisions. The proposed Country Lane 1 and Country Lane 2 developments and a proposed senior housing development are located within this Drainage Zone. There are also local storm drains serving the southwest portion of this Drainage Zone within a local, older section of the City that discharge into the City's sanitary sewer system. MID's Wakefield Lateral extends through this Drainage Zone.

Drainage Zone G

Drainage Zone G is approximately 0.32 square miles in area and is located northeast of Highway 99, west of the alignment of Hunter Road, south of Walnut Avenue and east of Hammett Avenue. The city has a proposal for Blueberry Crossing, a truck stop, retail pads, restaurant pads, a hotel pad, and a banquet facility to be developed within this Drainage Zone. There is no positive storm drain system serving this Drainage Zone, and existing land use is predominantly agricultural.

Drainage Zone H

Drainage Zone H is approximately 0.70 square miles in area and has its boundaries defined by the Hunter Road alignment on the west, Olive Avenue on the north, Sultana Drive on the east, and Highway 99 on the south. The Drainage Zone currently consists of predominantly agricultural land uses. MID's Arena Canal extends along a portion of the south boundary of this Drainage Zone. There is no positive storm drain system serving this Drainage Zone.

Drainage Zone I

Drainage Zone I is approximately 0.31 square miles in area and is located north of the Arena Canal, south of Highway 99, and east of the Hammett Avenue. This Drainage Zone currently consists of a mix of residential and agricultural land uses, and includes the Vintage West Nos. 4 and 5 subdivisions and their detention/percolation basin.

Drainage Zone J

Drainage Zone J is approximately 0.15 square miles in area, is located south of Walnut Avenue, and is generally bisected by Dwight Way. Drainage Zone J includes the existing Country Villas subdivisions, the Country Villas 4 subdivision under construction to the south of the existing Country Villas subdivisions, and the City's park site at the southwest corner of Walnut Avenue and Dwight Way. There is an existing detention basin located within the City's park site that currently serves as a drainage outfall for the Country Villas subdivisions. The City intends to retrofit this detention basin to more favorably accommodate the desired recreational elements associated with the City's park site. MID's Wakefield Lateral extends through this Drainage Zone.

Drainage Zone K

Drainage Zone K is approximately 1.50 square miles in area and is located in the northeast quadrant of the SDMP study area. It is bounded by Olive Avenue on the north, Sultana Drive on the west, Peach Avenue/Liberty Avenue on the south, and Cressey Way on the east. Existing land use within this Drainage Zone is almost exclusively agricultural. MID's Arena Canal extends along the south boundary of this Drainage Zone. There is presently no positive storm drain system serving this Drainage Zone.

Drainage Zone L

Drainage Zone L is composed of approximately 0.25 square miles located in the easternmost portion of the SDMP study area. It is triangular in shape and is bounded by Peach Avenue/Liberty Avenue on the north, Cressey Way on the east, and Highway 99 on the southwest. Existing land use within this Drainage Zone is almost exclusively agricultural. MID's Arena Canal extends along the north boundary of this Drainage Zone. There is presently no positive storm drain system serving this Drainage Zone.

Drainage Zone CC

Drainage Zone CC is the "City Core" Drainage Zone that is bounded by all of the other Drainage Zones and is approximately 1.69 square miles in area. It includes the majority of existing developed areas of the City and contains a wide variety of land uses. There are several existing detention/percolation basins within this Drainage Zone including Arakelian Park (a joint-use detention basin), a detention basin serving an existing subdivision on the north side of Flint Avenue (F Street) north of Arakelian Park, a detention/percolation basin serving areas contiguous to the north of Highway 99 east of Livingston/Cressey Road and a detention/percolation basin serving earlier phases of the Vintage West subdivision in the southeast portion of the Drainage Zone. There are several local storm drains that serve this Drainage Zone; however, information regarding their size and alignments is very limited based on a review of available records. MID's Arena Canal extends along the south and southwest boundaries of this Drainage Zone.

Hydrology

The U.S. Army Corps of Engineers' (COE) HEC-1 computer program was used to develop a rainfall/runoff computer simulation for the Drainage Zones and sub-

basins in the study area. The HEC-1 computer model develops a runoff hydrograph for individual sub-basins through the input of numerical representations of their physical and hydrological characteristics. The computed hydrographs are then routed and/or combined with hydrographs from other sub-basins to yield a dynamic numerical analysis of peak discharges that may be expected to occur at a number of key concentration points along a given flow path. The HEC-1 model was used to estimate flow discharges that would be expected at major detention basins that are proposed to serve Drainage Zones A through L and at key locations within the study area during the 10-year and 100-year storm events.

Rainfall Loss

Rainfall loss is that portion of the precipitation depth that is lost due to evaporation, interception by vegetation, infiltration into soil, and surface depression storage. Rainfall excess is that portion of the precipitation depth that appears as surface or collected storm runoff during and after a storm event. Rainfall losses in the hydrologic analysis were determined using the NRCS Curve Number (CN) Method that uses a soil cover complex for estimating such losses. The CN is related to the underlying hydrologic soil group (A, B, C, or D), land use, cover density, and antecedent soil moisture conditions. The four hydrologic soil groups are described in greater detail in the listing below:

- *Group A:* Low runoff potential soils having high infiltration rates even when thoroughly wetted and consisting chiefly of deep, well-drained sands or gravels. These soils have a high rate of water transmission.
- *Group B:* Soils having *moderate infiltration* rates when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately well to well-drained sandy-loam with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.
- *Group C:* Soils having a *low infiltration* rate when thoroughly wetted and consisting chiefly of silt-loam soils with a layer that impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water transmission.

Group D: High runoff potential soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a clay pan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have slow rate of water transmission.

The soil groups that are present within each Drainage Zone are listed in Table 2.

Assumed Land Uses

Future land uses were incorporated into the hydrologic modeling effort by assigning impervious cover percentages to all of the future land uses defined by the City for the entire SDMP study area. The land uses are defined the City's ongoing General Plan update. For the purposes of hydrologic modeling, discharge determination, and the master planning of storm drainage facilities in this SDMP, <u>future buildout of the SDMP study area was assumed.</u> Assumed land uses are depicted for Drainage Zones and sub-basins on Table 2.

The percent impervious area assigned to the relevant land uses represents an important input parameter in the HEC-1 computer model. The computer model relates the amount of impervious area to the total area of a given sub-basin to estimate the amount of runoff losses attributed to pervious areas. The following impervious cover percentages were utilized to reflect different land uses and are also provided on Table 1:

Land Use Designation	Percent Impervious Cover
Low-Density Residential	40%
Medium-Density Residential	55%
High-Density Residential	65%
All Commercial Designations	85%
Mixed Use	65%
Limited or Light Industrial	85%
General Industrial	90%
Schools	30%
Parks/Open Space/Conservation Reserve	15%
Urban Reserve	55%

Curve Numbers

The CN values for pervious areas and impervious areas were established for Drainage Zones and Sub-basins using the NRCS publication entitled <u>Urban</u> <u>Hydrology for Small Watersheds</u> and were subsequently weighted for each Drainage Zone and Sub-basin as shown on Table 2.

Rainfall

A 24-hour rainfall depth of 2.06 inches for the 10-year storm and 2.88 inches for the 100-year storm events were utilized in the hydrologic analysis. These values were taken from the City of Merced's Storm Drain Master Plan, which has comparable rainfall characteristics.

Unit Hydrograph

For runoff computations from each sub-basin, the NRCS Dimensionless Unit Hydrograph option was utilized in the HEC-1 computer model.

Lag Time

Input data for NRCS Dimensionless Unit Hydrograph includes the parameter, TLAG, which is equal to the lag time (in hours) between the center of mass of rainfall excess and the peak of the unit hydrograph. Lag time was estimated utilizing the NRCS method of computing the Drainage Zone lag value from the time of concentration. The equation is as follows:

$$TLAG = 0.6t_c$$

t_c = time of concentration

The time required for storm water to flow in the form of runoff from the most hydraulically remote point in the drainage sub-basin or Drainage Zone to a collection point is called the time of concentration. Time of concentration is the sum of the minimum overland travel time (initial time of concentration) and the gutter flow time. The gutter flow time was calculated by dividing the maximum length of travel by the velocity of the gutter flow. For gutter flow, an average velocity of two (2) feet per second was assumed based on the relatively flat street gradients that exist or will exist throughout most of the City. Values for TLAG are computed and summarized on the worksheets provided in Table 3.

HEC-1 Results

The HEC-1 computer model input and output are provided in the Appendix. Table 4 provides a listing of 100-year composite discharges generated by Drainage Zones A through L that would constitute a peak inflow rate into proposed major detention basins.

Rational Method

The Rational Method was also utilized to estimate runoff rates that would be generated by a generic 100-acre local watershed under different land use assumptions. This assessment was utilized as a tool for deriving estimates of 10-year peak discharges generated from local areas within Drainage Zones and Sub-basins that could be used to size local storm drains as a part of the development of SDMP storm drainage infrastructure. The Rational Method assessment is summarized on Table 5.

5.0 Storm Drainage Infrastructure Plan

General

This SDMP presents a storm drainage infrastructure plan that will serve the buildout of the SDMP study area and mitigate flooding and nuisance associated with selected existing development areas and facilities.

Design Standards

The following design capacities are recommended as the standards to apply to the sizing of new and replacement storm drainage infrastructure:

- Underground Storm Drains 10-year, 24-hour storm
- Detention Basins 100-year, 24-hour storm peak volume considering pump outflow rate. All permanent detention basins shall have outlets (gravity or pump). Detention basin pumping shall conform to the requirements set forth by MID and/or per applicable drainage agreements with MID, when MID facilities are utilized as outfall facilities.

Additional recommended standards to apply to detention basins and temporary percolation basins include the following:

- Maximum allowable drain time for a 10-year, 24-hour storm is 72 hours
- Geotechnical investigations and soil borings are required prior to design to determine sub-surface strata, percolation rates and allowable or recommended depths
- Maximum allowable side slopes are 3:1 in non-joint-use basins and 4:1 for facilities that incorporate park elements, except for structural or aesthetic components
- Integrate recreation elements to facilitate joint-use in conjunction with design and construction of major permanent detention basins, where desired and feasible.

Outfalls

It is recommended that MID facilities be utilized as an outfall for metered discharges from the major detention basins serving most Drainage Zones. MID has indicated a willingness to continue to accept City storm runoff in their facilities, subject to meeting several physical, legal and financial requirements. To more effectively facilitate a long term program, MID staff have expressed a desire to formulate and execute a Memorandum of Understanding (MOU) between the City and MID. This MOU would set guidelines and standards for future discharge agreements and set forth a strategy for how fee collections will be made and how funds will be dispensed to MID. All new development projects that will utilize MID facilities as the point of drainage outfall will be required to execute a drainage agreement. These items were discussed in meetings held with MID staff on May 26, 2004 and on August 4, 2005, and the minutes of these meetings are included in the Appendix.

Given the flatness of topography, the abundance of MID canals and laterals traversing through the SDMP study area, and the limited practical availability of other outfalls, it is logical for the City to lay the groundwork for continuing to utilize MID facilities as a part of their storm drainage solution. Discharges into MID facilities contemplated by this SDMP are all recommended to be at low rates ranging from 0.5 to 2 cfs. These are lower rates than are currently being applied per existing drainage agreements when measured on a per acre area to be served basis of comparison.

Drainage Zone D is located contiguous to the Merced River. The utilization of a terminal detention basin to be located within the terrace area of the floodplain adjacent to the Merced River or in an upland area for discharge to the Merced River should be considered as a preferred alternative to utilizing MID facilities for terminal discharge within this Drainage Zone, subject to meeting applicable environmental and regulatory requirements. The location of the terminal detention basin will be determined as a part of planning and design associated with the proposed River Ranch project.

Terminal Detention Basins

In all instances, it is proposed that storm runoff from new development and/or retrofitted facilities will enter terminal detention basins prior to discharge to MID facilities or the Merced River. The terminal detention basins are the larger, consolidated detention facilities that are proposed to serve each Drainage Zone.

These terminal detention basins are a critical component of the storm drainage infrastructure plan and offer the following key benefits:

- Storage and attenuation capabilities that will serve to limit the magnitude of downstream discharge rates. This is important from a capacity standpoint for downstream MID facilities and from a regulatory permitting standpoint for both MID facilities and the Merced River.
- Storage capabilities that will serve to provide discharge control in an emergency. This is important should there be a spill of hazardous material within the City, as such a spill may be collected and remediated within the basin to avoid release into downstream waters. Discharge control will also be of benefit if downstream capacity is temporarily unavailable due to high flows in outfall facilities. Further, should pumping facilities fail due to a power outage or mechanical problems, the storage capabilities of the terminal detention basins will reduce the potential for surrounding areas to be flooded while repairs are completed.
- Creation of low lying areas for upstream storm drain facilities to discharge to. The flatness of topography in the City creates a need for down-gradient areas to be created to allow storm drainage facilities to gravity drain to desired locations.

With the possible exception of the terminal detention basin that will serve Drainage Zone D, the lowest lying portions of the detention basins will be several feet below the discharge elevation for their outfalls; and thus, the terminal detention basins will need to be drained by pumping facilities.

Many Cities utilize terminal detention basins as an integral part of their storm drainage facility and storm water management programs. Nearby Cities utilizing similar approaches include: Merced, Modesto, Tracy, Manteca, Lodi, Turlock, and Fresno.

Storm Water Management Program

The City of Livingston has participated in the development of a Storm Water Management Program (SWMP) for the purpose of limiting to the Maximum Extent Practicable (MEP) the discharge of pollutants from the Merced Storm Water Group (MSWG) storm sewer system. The MSWG is a coalition of municipalities acting as co-permittees consisting of the Cities of Atwater, Livingston, and Merced, Merced County and MID. The development and

implementation of the SWMP is intended to fulfill requirements for improving the quality of storm water discharges from Small Municipal Separate Storm Sewer System (MS4) operators in accordance with Section 402(p) of the Federal Clean Water Act (CWA). The SWMP was developed as a requirement of and to achieve compliance with General Permit Number CAS000004, Water Quality Order No. 2003-0005-DWQ. The latest version of the SWMP is dated March 1, 2004. The City of Livingston is listed as a municipality that is governed by Water Quality Order No. 2003-0005-DWQ, and the SWMP has been approved by the California State Regional Water Quality Control Board (SRWQCB) Central Valley Region (5F).

The SWMP includes Best Management Practices (BMPs) intended to reduce to the MEP, the quantity of storm water and the discharge of pollutants to the storm water system. The SWMP will be reviewed periodically, as appropriate, and any changes or modifications will need to be described and submitted to and approved by the RWQCB. The review will include the following:

- A review of the status of program implementation and compliance
- A review of any revision or change of BMPs during the year and an assessment of the effectiveness of such revision
- An overall assessment of the goals and direction of the SWMP and effectiveness of BMPs
- A review of monitoring data, any changes in monitoring methods and parameters, and an assessment of the overall monitoring program.

The SWMP was developed to meet the terms of the General Permit and consists of the six minimum control measures established by RWQCB for Phase II storm water discharges. The six minimum control measures are:

- Public education and outreach
- Public involvement/participation
- Illicit discharge detection and elimination
- Construction site storm water runoff control

- 5.0 Storm Drainage Infrastructure Plan (continued)
 - Post-construction storm water management for new development and redevelopment
 - Pollution prevention/good housekeeping for municipal operations

This SDMP acknowledges the requirements of the SWMP and is not intended to supercede, contradict, or override any of said requirements.

Storm Drain Sizing and Alignments

Storm drains proposed to serve new development areas and improve storm water conveyance in existing development areas of the SDMP study area were sized based on uniform flow capacities for different concrete pipe sizes at an assumed slope of 0.002 feet/feet. A table depicting uniform flow capacities for a variety of pipe sizes and slope conditions is provided herein as Table 6. Storm drains were extended in a manner such that each property or project to be developed in new development areas would have access to a storm drain outfall. Discharges for the 10-year storm were estimated using the Table 5 discharge per acre rates for applicable land uses as applied to the areas served and the HEC-1 model.

To the extent possible, new storm drains were aligned along existing streets. In some areas, storm drains were aligned along missing segments of existing streets. Some storm drain lines have been aligned adjacent to MID canals and laterals.

In instances where an existing or future street alignment and right-of-way or other contiguous right-of-way were not readily available, storm drain alignments were extended along property lines, and it was assumed that a 20' wide drainage easement would need to be acquired to facilitate construction.

Proposed Storm Drainage Infrastructure Plan

The following paragraphs present a general description of the storm drainage infrastructure that is proposed to serve each Drainage Zone. The elements of the Storm Drainage Infrastructure Plan are represented graphically on Exhibit A. Quantities and costs for the construction of the storm drainage infrastructure elements that will serve each Drainage Zone are tabulated on Tables 7 and 8. The cost estimates have assumed a total right-of-way and easement acquisition cost (where needed) of \$50,000/acre for any land located within the Merced River floodplain and \$250,000/acre for all other lands. These acquisition costs

are intended to include the composite of actual land values, staff costs, and legal and administrative costs and fees required to complete the acquisition process. The actual acquisition values to be applied to this SDMP may be subject to change. <u>Land acquisition requirements provided herein for detention basins</u> <u>pertain to storm drainage requirements, only, and do not include additional land</u> that may be needed to incorporate park elements as a joint-use.

Drainage Zone A

Drainage Zone A infrastructure is proposed to consist of storm drains, two (2) large intermediate detention basins (Detention Basins A2A and A2B), and a large terminal detention basin (Detention Basin A1) that will discharge into MID's Arena Canal. The discharges from Detention Basins A2A and A2B and from local downstream sub-basins will be accommodated by a roughly 2 1/2 mile long trunk storm drain that will extend primarily along Magnolia Avenue from Detention Basin A2A to Detention Basin A2B to Detention Basin A1. This Drainage Zone is the largest Drainage Zone established in this SDMP and has been subdivided into several sub-basins to allow design discharges to be determined via the HEC-1 model at several key locations, particularly through Detention Basins A2A and A2B and along the route of the Magnolia Avenue trunk storm drain. West of Lincoln Blvd., the Magnolia Avenue trunk storm drain will then extend southwesterly into the proposed Ranchwood development and connect to the proposed terminal detention basin (Detention Basin A1) as shown on Exhibit A. Detention Basin A1 is located adjacent to MID's Arena Canal, and a portion of Detention Basin A1 is proposed to extend to the west side of the Arena Canal and will provide a link for drainage originating from Sub-basin A1-1. Detention Basin A1 is envisioned to include a deep zone, in order for adequate grade to be made available to the upstream contributing system and is envisioned to discharge into the Arena Canal via a pump station and force main.

Drainage Zone B

Drainage Zone B will be drained by new storm drains that will deliver flow to a proposed terminal detention basin to be located in the south central portion of the Drainage Zone. The terminal detention basin location was established based on topographic considerations (it is located in a low lying topographic depression within Drainage Zone B). It is envisioned to include a deep zone, in order for adequate grade to be made available to the upstream contributing system. The terminal detention basin is envisioned to discharge into MID's Arena Canal to the east via a pump station and force main.

Drainage Zone C

Drainage Zone C will be drained by new storm drains that will deliver flow to an existing joint-use terminal detention basin located on the west side of MID's Arena Canal and on the west side of the Bridgeport Village development. The existing percolation basins serving the Monte Cristo developments have recently been eliminated (filled), and storm drain outfalls extended to connect to the terminal detention basin. The terminal detention basin is proposed to drain to MID's Arena Canal via pumping. A secondary outfall draining to Detention Basin A1 to the south may also be implemented in the future, if desired by the City.

Drainage Zone D

The majority of this Drainage Zone is covered by the proposed River Ranch project area. Storm drains are proposed to serve properties south of and adjacent to Vinewood Avenue. The River Ranch project development will need to accommodate flows from these storm drains in a manner to be determined via the development design process. Combined flows from the Drainage Zone constituents shall be directed northward to a proposed terminal detention basin to be located in the floodplain terrace adjacent to the Merced River or within the development area. Discharge will be to the Merced River via a gravity outlet having a very low discharge rate. Appropriate regulatory permits and environmental clearances will need to be obtained during the design process for this terminal detention basin.

Drainage Zone E

The majority of this Drainage Zone is Foster Farms property, which is a combination of developed and undeveloped land. As a part of continued development within the Drainage Zone, it is assumed that each property will provide onsite (and perhaps offsite) storm drain facilities and detention or retention basins. A formal storm drainage infrastructure plan is not included in this master plan for Drainage Zone E. It is assumed that Foster Farms and contiguous properties will continue to prepare their own drainage facility plans for submittal to the City for review and approval as a part of the development review process.

Drainage Zone F

Drainage Zone F includes a mixture of developed and undeveloped properties that will be served by storm drains that will deliver flows to a proposed terminal detention facility to be centrally located east of the southeast corner of the Country Lane 2 development. The terminal detention basin is proposed to discharge to MID's Wakefield Lateral to the west via a pump station and force main. Storm drain infrastructure extended to the southwest portion of the Drainage Zone (along Livingston/Cressey Road north of Highway 99) is intended to replace existing storm drain connections to the City's sanitary sewer system in this area. Also, the existing detention/percolation basins currently owned by the City and serving the Harvest Manor and Country Roads subdivisions are proposed to be filled and decommissioned as a part of implementing the infrastructure plan for this Drainage Zone.

Drainage Zone G

Drainage Zone G will be drained by new storm drains that will deliver flow to a proposed terminal detention basin to be located in the southeast corner of the Drainage Zone. The terminal detention basin is envisioned to discharge into the proposed terminal detention basin that will serve Drainage Zone H to the east for eventual delivery to MID's Arena Canal to the east via a pump station/force main.

Drainage Zone H

Drainage Zone H will be drained by new storm drains that will deliver flow to a proposed terminal detention basin to be located in the southwest corner of this Drainage Zone. The terminal detention basin is envisioned to work in conjunction with the terminal detention basin that will serve Drainage Zone G. It is proposed that the terminal detention basin discharge to MID's Arena Canal to the east via a pump station and force main.

Drainage Zone I

Drainage Zone I will be drained by new storm drains that will deliver flow to a proposed terminal detention facility to be located near the northeast corner of Dwight Way and Peach Avenue near the center of the Drainage Zone. The existing detention basin serving Vintage West Nos. 3 and 4 is proposed to be filled and decommissioned as a part of the infrastructure plan for this Drainage Zone. The proposed terminal detention basin is proposed to discharge to MID's Arena Canal to the south via a pump station and force main.

Drainage Zone J

Existing development within Drainage Zone J is served via a terminal detention basin located in the City's park site at the southwest corner of Walnut Avenue and Dwight Way. Flows collected in the terminal detention basin are discharged into MID's Wakefield Lateral via a pump station and force main. To accommodate new development and to improve the function of the City's park site, it is proposed that the existing terminal detention basin and portions of the park site be retrofitted and regraded to accommodate a joint-use facility. Additional land may be needed to accommodate this retrofit.

Drainage Zone K

Drainage Zone K will be drained by new storm drains that will deliver flow to a proposed terminal detention basin to be located adjacent to the east side of Sultana Drive roughly ½ mile north of Peach Avenue/Liberty Avenue. The terminal detention basin is proposed to discharge to MID's Arena Canal, located roughly ½ mile to the south and at the south boundary of the Drainage Zone, via a pump station and force main.

Drainage Zone L

Drainage Zone L will be drained by new storm drains that will deliver flow to a proposed terminal detention basin to be located at the northwest corner of the Drainage Zone where Highway 99 and Peach Avenue/Liberty Avenue intersect. The terminal detention basin is proposed to discharge to MID's contiguous Arena Canal via a pump station and force main.

Drainage Zone CC

Within this Drainage Zone that includes the existing city core, there are several storm drains proposed to relieve existing nuisance flooding locations. A deep basin has also recently been constructed adjacent to the north of existing Arakelian Park. This deep basin will have the effect of accommodating flows from the existing detention basin and school site to the north (on the north side of F Street), providing for the decommissioning of the detention basin to the north, and relieving Arakelian Park of nuisance low flow flooding. An existing pump station at Peach Avenue and 7th Street is also proposed to be replaced, with drainage being allowed to discharge into a proposed 5-acre joint-use detention basin/park to be located on the south side of Peach Avenue and then being pumped to the Arena Canal via a new pumping facility.

Considerations and Requirements Applicable to New Development

In general, new development projects will be required to provide site-specific or project-specific storm drainage solutions that are consistent with the overall infrastructure approach presented in this Storm Drainage Master Plan. The City may allow for a reasonable degree of flexibility to be incorporated into specific design approaches as a part of achieving effective solutions. Any significant modifications to the elements of this Storm Drainage Master Plan must be approved by the City and will require that a formal "Supplement" be adopted by the City Council.

New development projects will be required to construct elements of the master plan infrastructure that have alignments that pass through them or extend along their project boundaries. The cost of construction of these master plan elements will be offset against other drainage funding requirements applicable to each project (such as drainage impact fees) in an appropriate manner. In some instances, the City may require or may accept the construction of offsite facilities or interim versions of master planned facilities as appropriate.

When new development projects are not located near existing or proposed terminal detention basins or outfalls leading to such terminal detention basins, the City may consider allowing the use of temporary storm drainage basins as an interim drainage solution, subject to appropriate engineering substantiation regarding feasibility. At the discretion of the City, the project developer may be required to maintain temporary storm drainage basins until the storm drainage system for the development project is connected to the City's permanent storm drainage system and the temporary storm drainage basin is filled and decommissioned. In the event that temporary storm drainage basins are approved by the City for individual or groups of development projects, said approvals will only be provided with the understanding or anticipation that a permanent solution that will allow for the decommissioning of applicable temporary storm drainage basins within a reasonable time frame is imminent. The City may require that the developer deposit enough funds in advance with the City to pay for the future decommissioning of a temporary storm drainage basin.

6.0 Joint-Use Opportunities and Design Guidelines

The City has expressed a desire to avoid, where possible, the construction of new detention basins that serve no other function but to store and discharge storm runoff via pumping facilities or percolation. These single function facilities are eyesores and do not integrate well with adjacent development. Some retain water for long periods of time or indefinitely.

The consolidation of major storm water storage into a limited number of large detention basins provides the City with favorable opportunities for creating innovative grading and designs that incorporate recreation elements into the detention facilities. By adding lands allocated to storm water detention with lands allocated to parks, the City may effectively increase its available park land by utilizing functional joint-use design practices within consolidated facilities.

Many communities in the San Joaquin Valley have been able to effectively convert storm water lands to joint-use facilities that augment the community quality of life and aesthetic appeal as opposed to detracting from it.

An optimized joint-use detention basin will serve to:

- Maximize efficient use of land
- Satisfy detention needs for reducing peak flood flows
- Provide water quality treatment
- Expand community recreational opportunities, with minimal "down time" for recreation elements
- Incur reasonable maintenance requirements and costs
- Serve as a functional open space amenity.

There are several fundamental guidelines that should be followed when incorporating recreation elements into storm water detention facilities. They are:

• Low flow must be accommodated in a manner that confines the frequent inundations to areas that will create minimal nuisance or disruption of recreational uses and will characteristically require only limited maintenance.

- 6.0 Joint-Use Opportunities and Design Guidelines (continued)
 - Contouring within detention facilities is recommended to create internal elevation variations (or tiers) that have differing frequencies and depths of inundation and differing flood risk.
 - Internal drainage within detention facilities should provide for positive flow across elevated tiers and to the lowest lying areas of the facilities.
 - Internal slopes should be flat enough to allow for mowing of turf areas and to allow other routine recreational-related maintenance activities to occur.
 - Hydraulic design components should be included as needed (inflow structures, outflow structures, pump stations, sediment basins, spillways, surcharge structures, etc.).
 - Other requirements as dictated by jurisdictional regulations and policies, local site conditions or additional functional uses should be followed.

In general, passive recreational elements should be incorporated in portions of detention facilities having the greatest potential flood risk and frequency. Active recreation elements are more suitable in areas within detention facilities having lesser degrees of flood risk and frequency.

Based on preliminary evaluations performed in conjunction with the preparer of the City's current Parks and Recreation Master Plan, the following is a general assessment of the joint-use potential for the major detention facilities serving each Drainage Zone:

Drainage Zone A – Good joint-use opportunity. Integrate with a community park.

Drainage Zone B – Good joint-use opportunity. Integrate with a neighborhood park.

Drainage Zone C – Integrate open fields (soccer fields) as joint-use elements.

Drainage Zones D and E – Could be integrated into a river corridor (along the Merced River), passive parkway or greenway with a trail system.

Drainage Zone F – integrate open fields, similar to Drainage Zone C.

Drainage Zone G and H – Reasonable joint-use opportunity to integrate with park lands.

6.0 Joint-Use Opportunities and Design Guidelines (continued)

Drainage Zone I – There are limited recreational needs to be satisfied at this location, perhaps some neighborhood park uses may be added.

Drainage Zone J – Additional land area is needed to effectively integrate detention with community park facilities.

Drainage Zone K – This will be a large detention basin to be constructed in the future and is located in an area currently designated as an Urban Reserve land use. At such time as further detail is applied to land use planning for this area, the large size of the facility and location along Sultana Drive will provide for joint-use opportunities.

Drainage Zone L – The proposed terminal detention basin is located in a pieshaped corner formed by the intersection of Highway 99 and Peach Avenue/Liberty Avenue within an area currently designated for a Highway Commercial future land use. The terminal detention basin could be landscaped, including signage, to provide an entry statement for future land development projects in the area.

Also, existing Arakelian Park is a joint-use facility that, until recently, did not function as effectively as desired as low flow frequently entered the active recreation areas and interfered with recreational uses. This condition has been ameliorated by creating and diverting low flow to a new, deep area constructed within an expansion of the park area within the contiguous property to the north.

7.0 Funding Alternatives

General

This SDMP identifies needs, priorities and costs for new and upgraded storm drainage facilities that are required to accommodate new development areas and relieve nuisance conditions in selected existing development areas. New and upgraded storm drainage facilities may consist of:

- 1. Facilities that serve existing development and are needed to correct existing deficiencies.
- 2. Facilities that are needed to serve new development.
- 3. Facilities that serve a combination of existing development and new development, with varying percentages of costs being attributable to accommodating new development and correcting existing deficiencies.

Given the above general scenarios, several approaches are available to the City for consideration regarding funding the desired capital improvements. Funding approaches may potentially consist of one or a combination of the following elements:

- Development Impact Fees (subject to Mitigation Fee Act known as AB 1600)
- Assessment District (1913/15 Act)
- Special Tax Districts (Mello Roos Community Facilities District Act of 1982)
- Storm Drain Utility Fee (subject to Proposition 218)

Existing developed areas in the City could fund storm drainage facility improvements through adoption of a storm drain utility fee. This would be subject to the provisions of Proposition 218, the "Right to Vote on Taxes Act" of 1996. New development can fund storm drainage improvements through a combination of development impact fees, assessment districts and special taxes. New development funds new and upgraded facilities, but they are not allowed to fund projects that fix existing deficiencies.

7.0 Funding Alternatives (continued)

Development Impact Fees

To the extent that new development creates a need for new and upgraded storm drainage facilities to accommodate the resultant increase in storm runoff caused by urbanization, the new development that utilizes these facilities will need to pay a fair share towards funding the required upgrades. See Section 8.0, "Impact Fees" for details.

Assessment Districts (1913/15 Act)

The potential exists for the establishment of one or more assessment districts to fund required storm drainage facilities and upgrades, where a common interest is shared by a large, but clearly defined group of constituents. The establishment of an assessment district requires a finding of direct and special benefit to the parcels being assessed, which shall be set forth in an Engineer's Report. Two public hearings and a mailed ballot are also required to establish an assessment district. If an assessment district is selected as a preferred financing mechanism, the SDMP may be utilized as a resource to assist in making the benefit findings required pursuant to Proposition 218 and preparing an Engineer's Report as part of formation of the district.

Special Tax – Mello Roos Community Facilities District (Act of 1982)

If the City determines that more flexibility is needed in the allocation of costs and funding burdens, a Mello-Roos Community Facilities District (CFD) may be used instead of an assessment district. The Mello-Roos law does not require a finding of benefit for allocating costs among properties within the CFD, and the special tax can be spread in any "reasonable manner" according to the law. If a CFD is determined to be a more feasible funding tool, it will be necessary to prepare a Rate and Method of Apportionment of Special Tax for the CFD as a part of CFD formation and bond issuance. It does require a 2/3 approval of registered voters. However, if less than 12 registered voters reside in the area, which is typical of undeveloped land, the special tax can be implemented with a property owner vote.

7.0 Funding Alternatives (continued)

Storm Drainage Utility Fee Program

The City may initiate the steps that are required to implement a City-wide "storm drainage utility fee" program for the purpose of funding street sweeping, leaf collection, system maintenance, storm drain repairs, vegetation removal, and capital improvements to improve the existing storm drainage deficiencies. Many of these services are needed to meet the requirements of the Federal Clean Water Act. The proposed fees may include an operating component and a capital component. The process of establishing a storm drainage utility fee program will be subject to Proposition 218 which includes public hearings and a public election.

8.0 Impact Fees

General

To the extent that new development creates a need for new and upgraded storm drainage facilities to accommodate the resultant increase in storm runoff caused by urbanization, the new development that utilizes these facilities will need to pay a fair share towards funding the required upgrades. This can be accomplished by requiring new development to pay development impact fees in conformance with AB 1600 (Mitigation Fee Act).

Impact Fee Calculation Procedure

Storm drainage impact fees have been calculated for new development within the SDMP study area using data and calculations represented on Tables 9A and 9B. The storm drainage impact fees proposed to be applied to various land use designations are listed on Table 9B.

The approach to determining appropriate impact fees as presented herein utilized representative land use and infrastructure cost data pertinent to Drainage Zones A, B, C, D, F, G, H, I, K, and L. These Drainage Zones were considered to have prevailing conditions with regard to levels of existing development and extent of properties served by proposed storm drainage infrastructure to be representative of impact fee requirements for the overall SDMP study area. Given that the majority of the proposed River Ranch project development in Drainage Zone D will develop its own storm drainage infrastructure plan, only the areas south of Vinewood Avenue and their proportional storm drainage infrastructure needs were incorporated into the contributing data for this Drainage Zone. It is the intent that the City will adopt a single storm drainage impact fee structure that may be applied to the overall SDMP study area, based on the calculations performed for these representative drainage zones.

Drainage Zones E, J and CC were not included in the representative drainage zones utilized to calculate storm drainage impact fees for the following reasons:

- Drainage Zone E is substantially Foster Farms property, and it is assumed that Foster Farms and contiguous properties will continue to prepare their own drainage facility plans for submittal to the City for review and approval as a part of the development review process.
- Drainage Zones J and CC are already substantially developed.

8.0 Impact Fees (continued)

Storm drainage impact fees have been calculated by allocating the fair share of the total storm drainage infrastructure costs applicable to the evaluated drainage zones to their various proposed (and existing) land uses and areas of coverage, based on the proportional runoff production characteristics for the different land This has been accomplished using a "percent impervious" use categories. approach that applies the percent impervious weighting value shown on Table 1 to each land use. The percent impervious approach will assign a lesser funding requirement on a per acre basis to a lower runoff producing land use (such as Low-Density Residential) than the requirement that will be applied to a greater runoff producing land use (such as Neighborhood Commercial). The funding responsibility for the total areas of each proposed land use was determined by weighting its proportional overall area by its applicable percent impervious value. This total funding responsibility for the land use category was then divided by the total acreage for the land use category to yield a funding responsibility value (or impact fee value) for the land use category on a per acre basis.

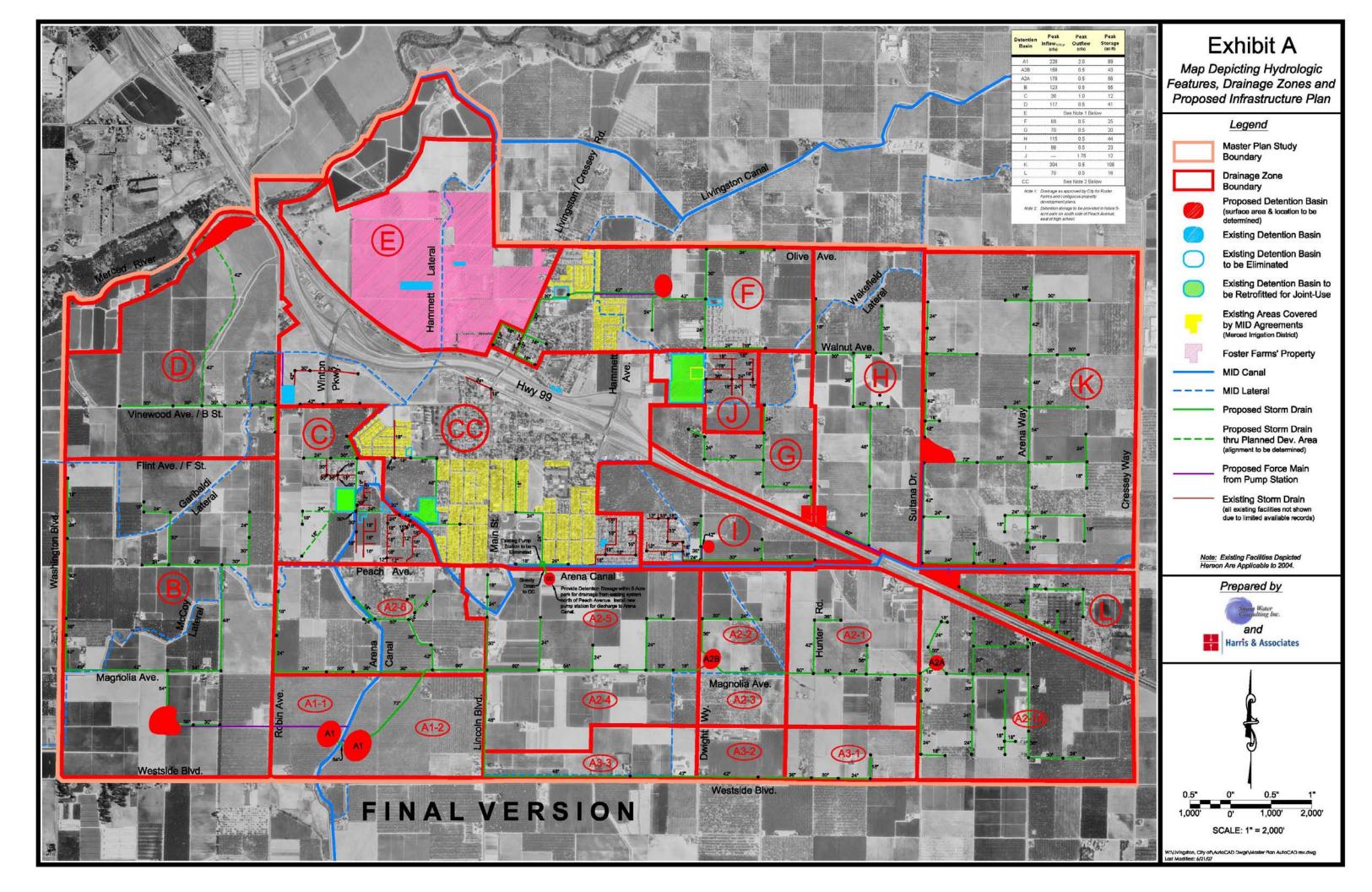
The per acre fair-share funding responsibility for the residential development land uses was subsequently divided by the following average development densities, provided by the City, to determine an appropriate impact fee on a "per dwelling unit" basis:

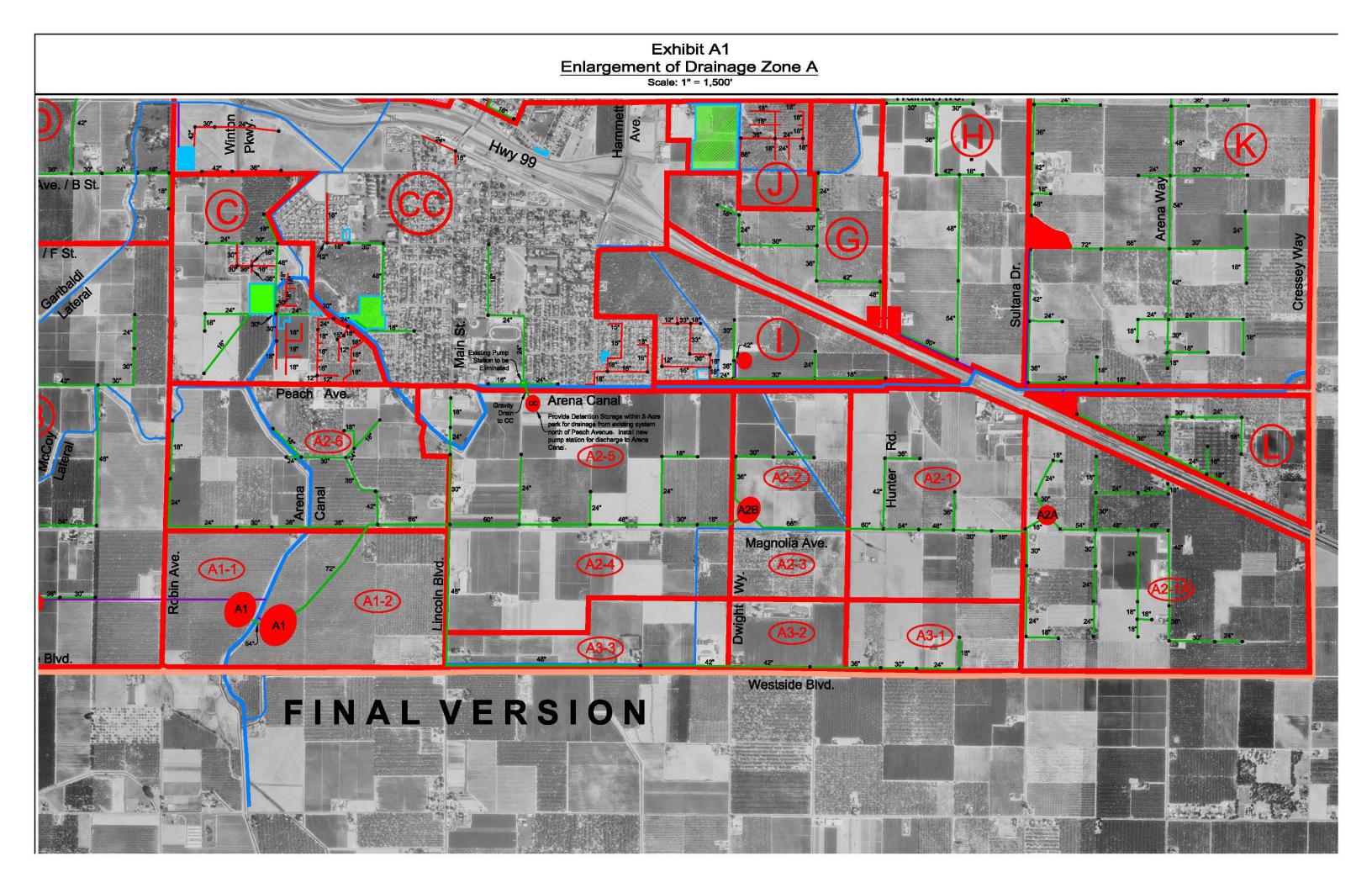
Residential Land Use Type	Average Density
Low-Density Residential	4.5 dwelling units/acre
Medium-Density Residential	9 dwelling units/acre
High-Density Residential	20 dwelling units/acre

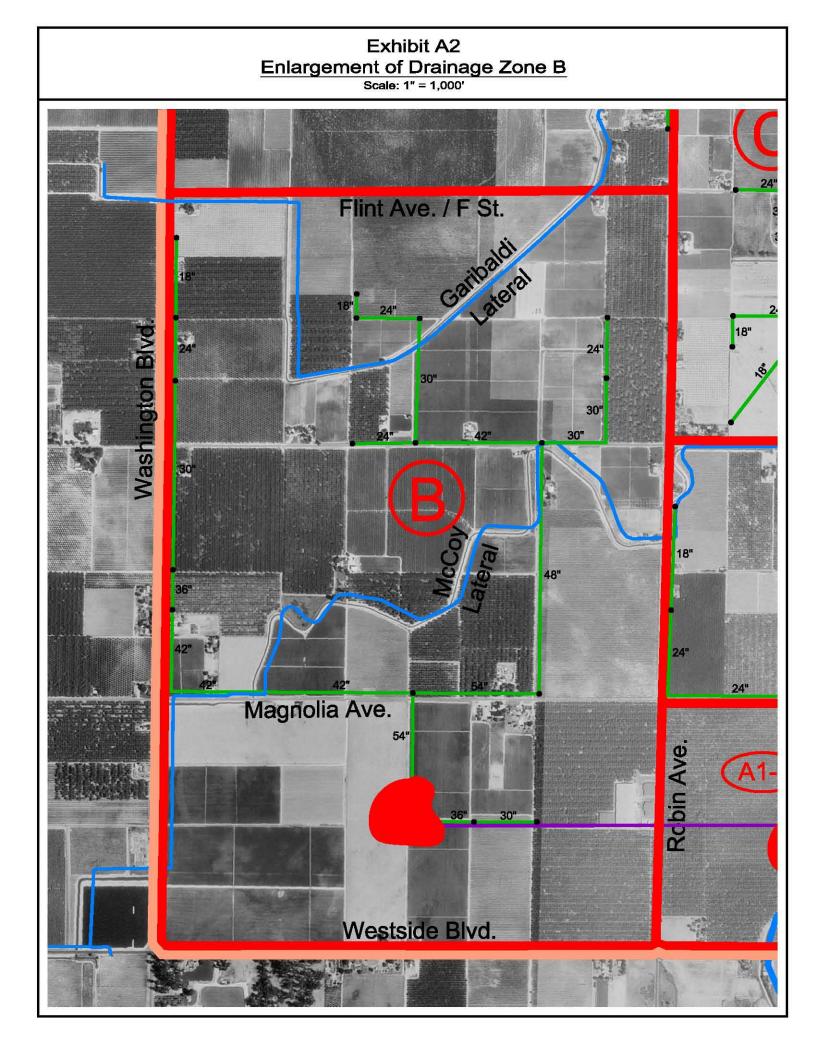
Calculated storm drainage impact fees are depicted on Table 9B. The storm drainage impact fees that are collected by the City from new development projects may be utilized to fund the storm drainage upgrades represented on the storm drainage infrastructure plan contained in this SDMP. In some Drainage Zones, elements of proposed storm drainage infrastructure plan are intended to solve existing deficiencies that are not attributable to new development, and funding for these facility upgrades will need to come from sources other than impact fees. Also, though existing development was included in the impact fee calculations (to the extent present in some of the representative drainage zones), it will be necessary to fund some of the facility upgrades represented in this SDMP by sources other than impact fees. The actual timing and responsibility for construction of storm drainage facilities will be determined by the City from time to time and in conjunction with approvals of individual development projects.

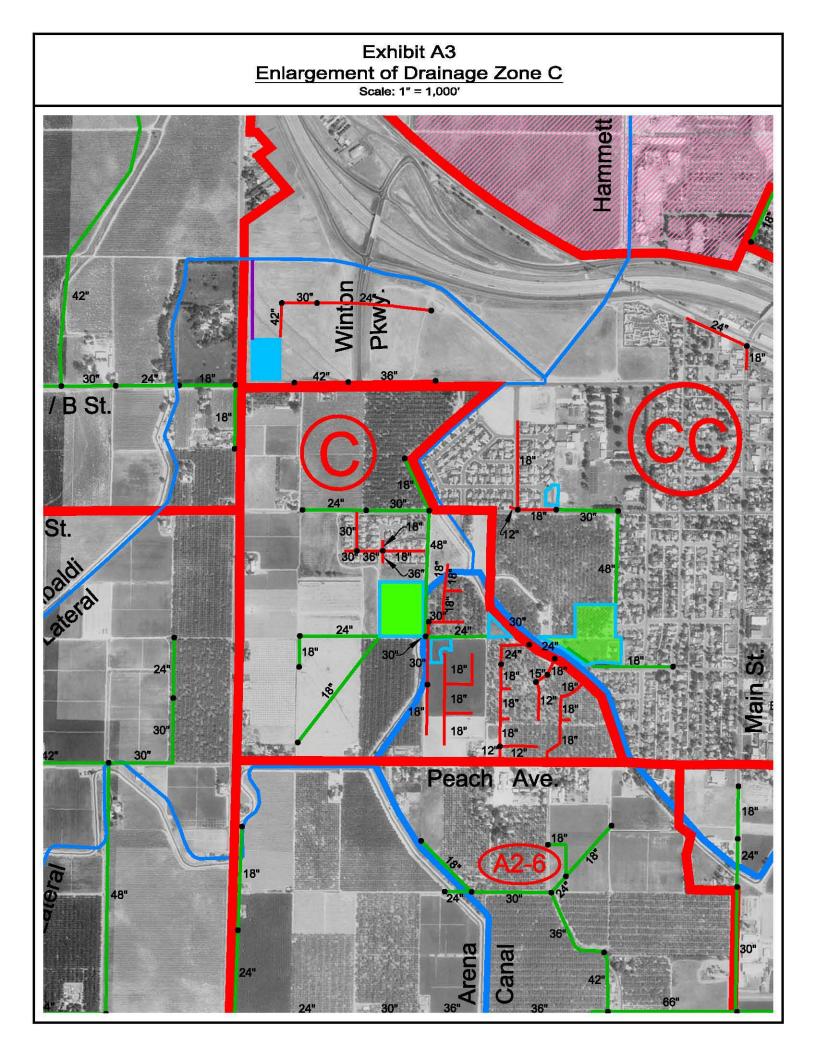
9.0 **Priority Projects**

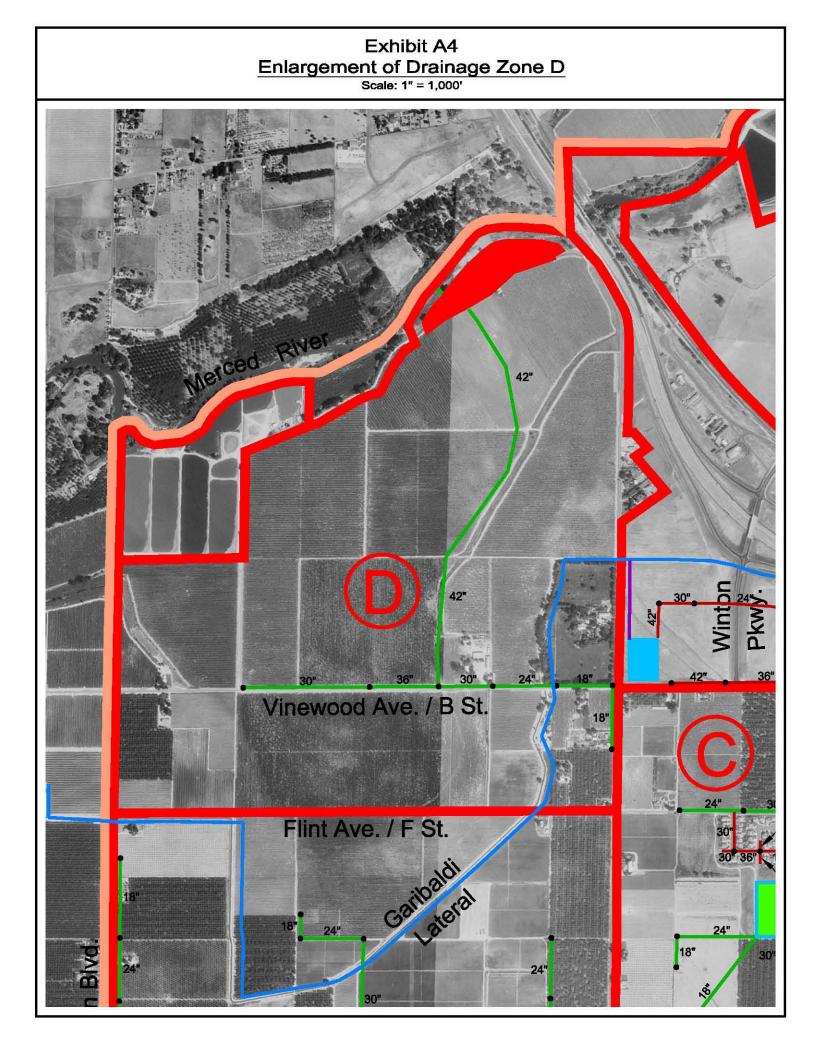
The following is an initial listing of storm drainage infrastructure improvement projects that the City has considered to be priorities as of the date of completion of this SDMP. The order in which these projects are listed does not represent any order of importance or urgency. This list may not include all of the projects of imminent importance and will be subject to change in the future.

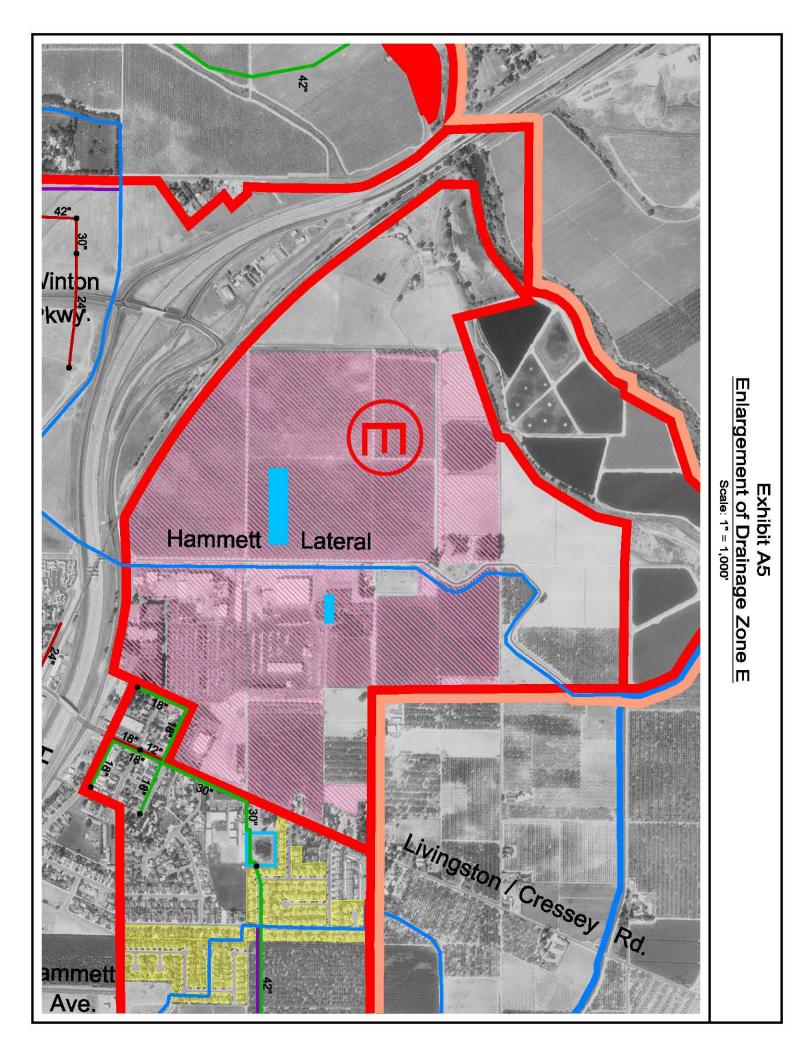

- 1. Arekelian Park/Detention Basin expansion (recently completed)
- 2. Bridgeport Joint-Use Detention Basin/Detention Basin C and elimination of Monte Cristo Detention Ponds (under constriction)
- 3. Initial Phase of Detention Basin A1 and construction of 72" SD trunk line south of Magnolia Avenue (within the proposed Ranchwood Development); Required storage for Initial Phase of Detention Basin A1 to be determined based on near term projection of development for which storage provision will be needed
- 4. Storm drainage infrastructure needed to serve initial phases of River Ranch project development. Infrastructure requirements will be established by the City based on near term projection of development for which infrastructure, including detention storage, will be needed
- 5. 5-Acre Joint-Use Park/Detention Basin and pump station upgrade at Peach Avenue and 7th Street
- 6. Detention Basin F, elimination of existing detention pond in Harvest Manor development, and 42" SD trunk line connection to Detention Basin F
- 7. New storm drains in southwest quadrant of Drainage Zone F to facilitate elimination of storm drain cross-connections to the City's sanitary sewer facilities
- 8. Pump station and force main to Garibaldi Lateral from existing detention pond at Vinewood Avenue and Robin Avenue
- 9. Expansion of Detention Basin J and improvement of joint-use function
- 10. Conversion of drainage pond serving Vintage West Nos. 4 and 5 to a jointuse recreational facility

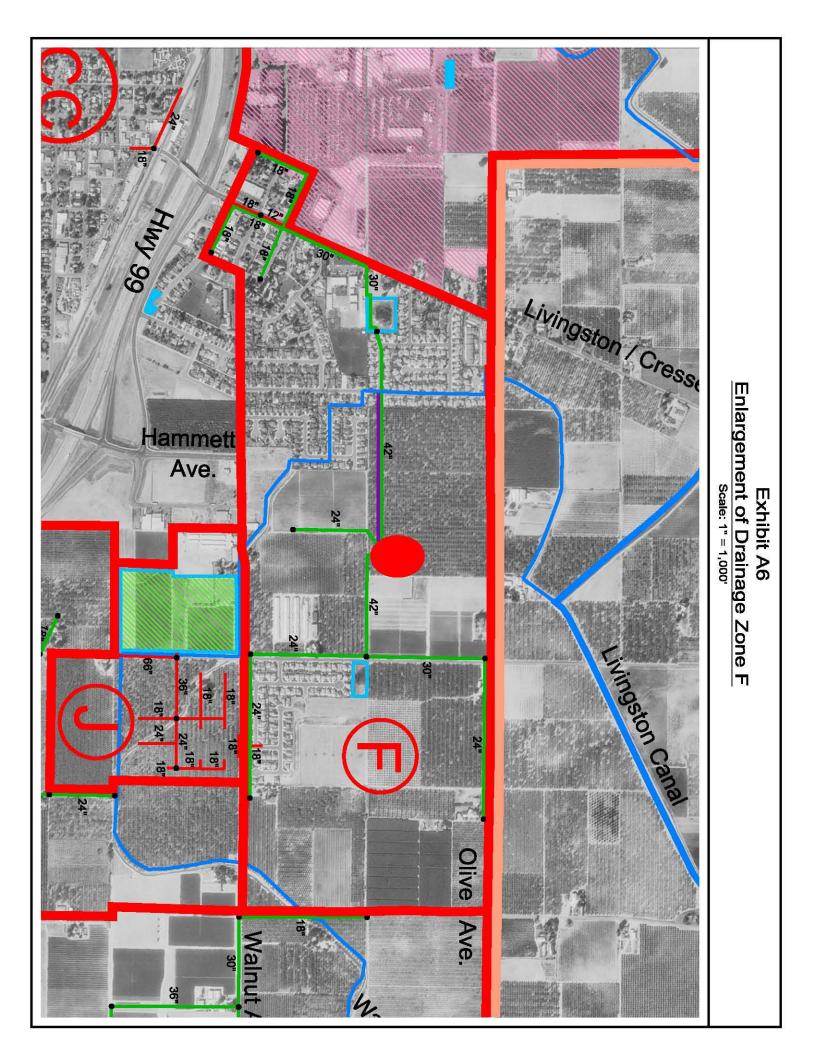

10.0 References

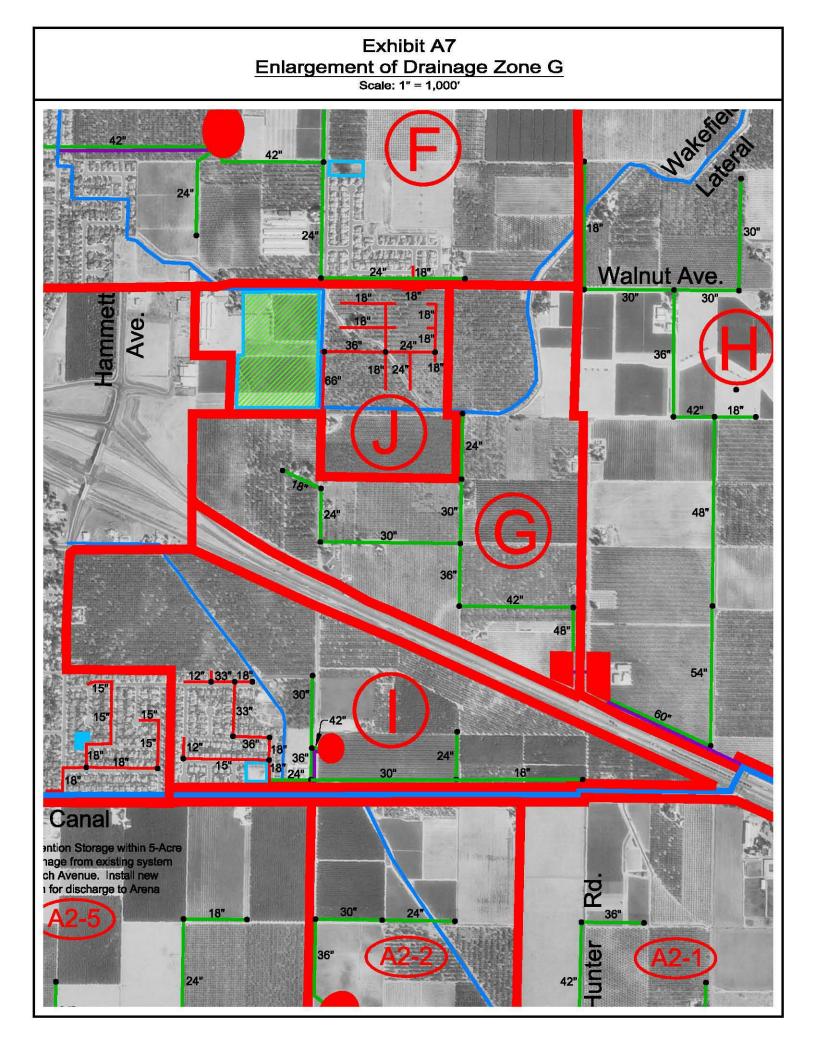

- 1. <u>City of Livingston Storm Drain Collection System Study and Master Plan;</u> Lew-Garcia-Davis; December 1992.
- 2. <u>City of Livingston Improvement Standards;</u> City of Livingston; August 1994.
- 3. <u>General Plan, Livingston, California</u>; Quad Knoph; December 1999 and <u>General Plan Update</u>; Pacific Municipal Consultants; May 2006.
- 4. <u>City of Livingston Design Guide</u>; City of Livingston; March 16, 2004.
- 5. <u>Urban Hydrology for Small Watersheds, TR-55</u>; Natural Resources Conservation Service; June 1986.
- 6. <u>Soil Survey Merced Area, California;</u> U.S. Department of Agriculture Soil Conservation Service, March 1991.
- 7. <u>Storm Water Management Program, Merced Storm Water Group;</u> Stantec Consulting Inc.; March 1, 2004.
- 8. <u>Manual of Standards for Design of Joint-Use Stormwater Detention</u> <u>Facilities, Volume 4, City/County Drainage Manual</u>; Cella Barr Associates; January 1994.

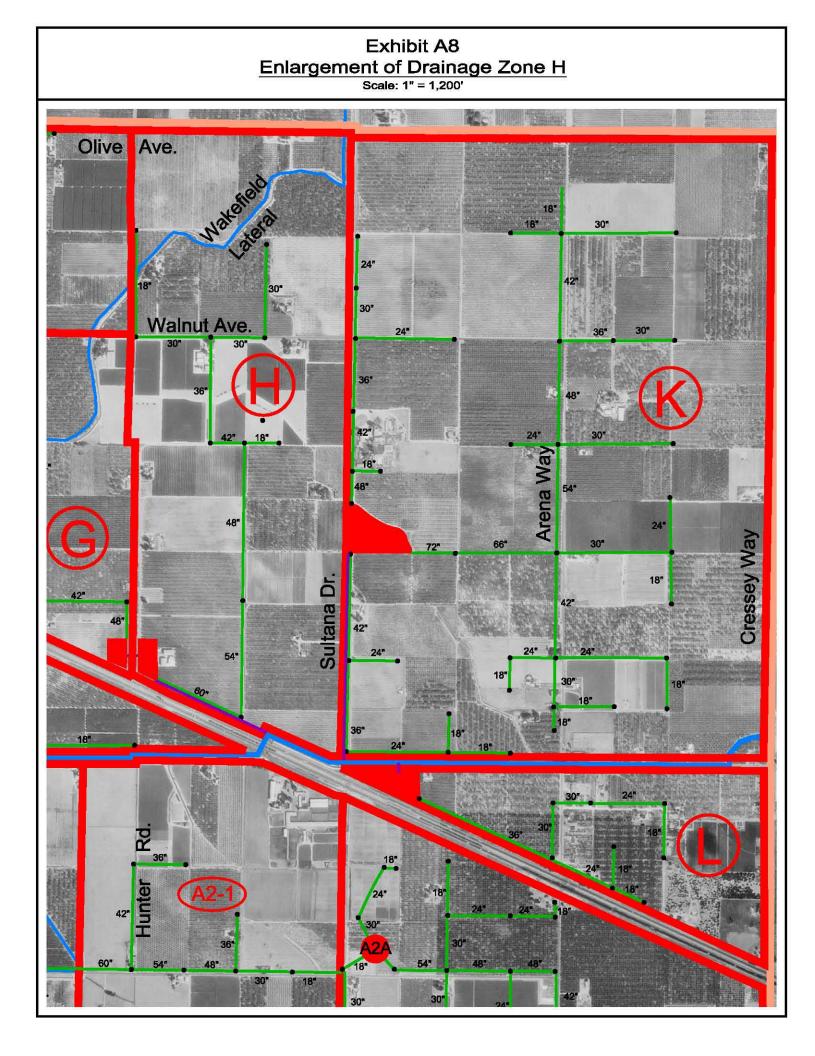

List of Exhibits

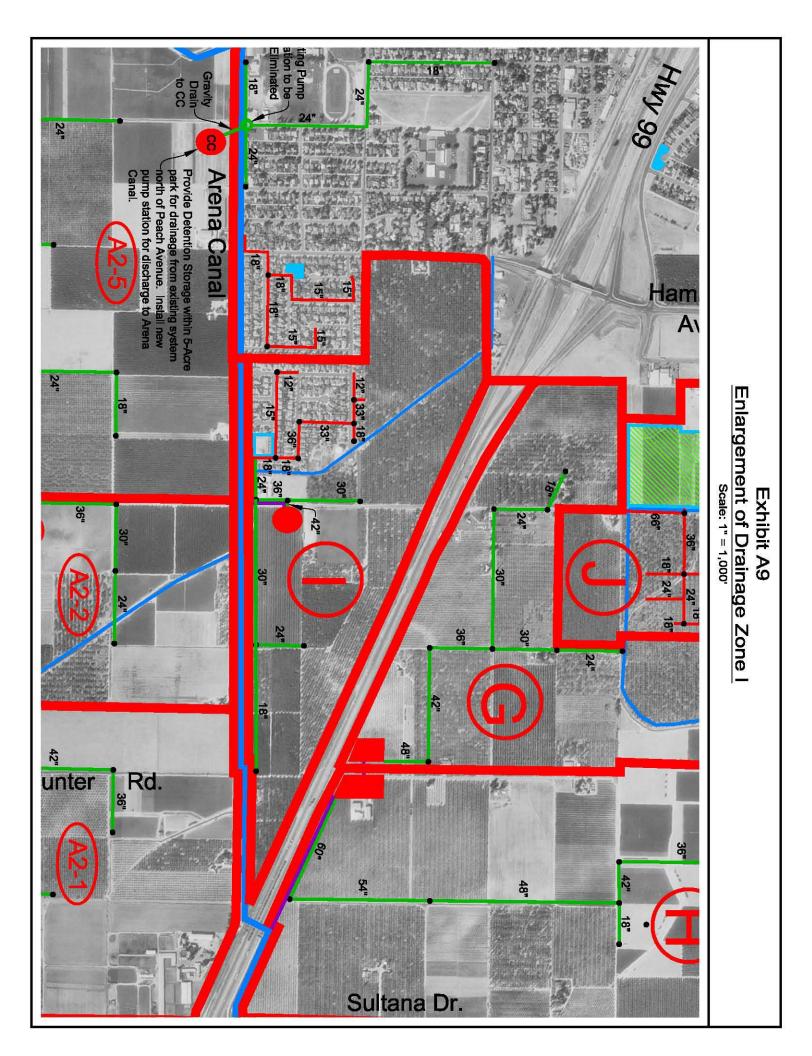


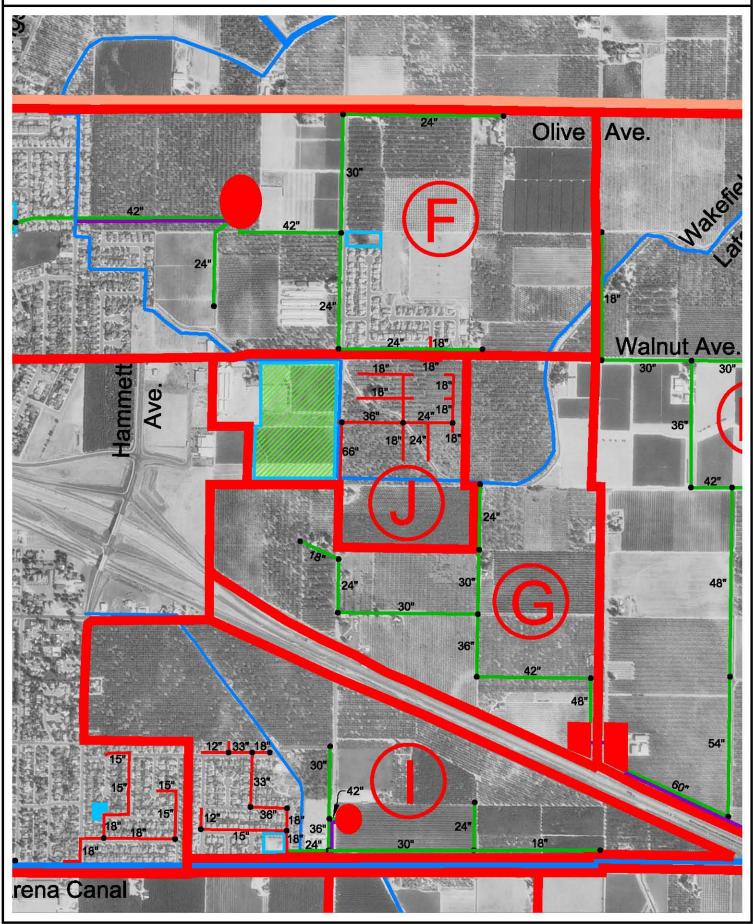












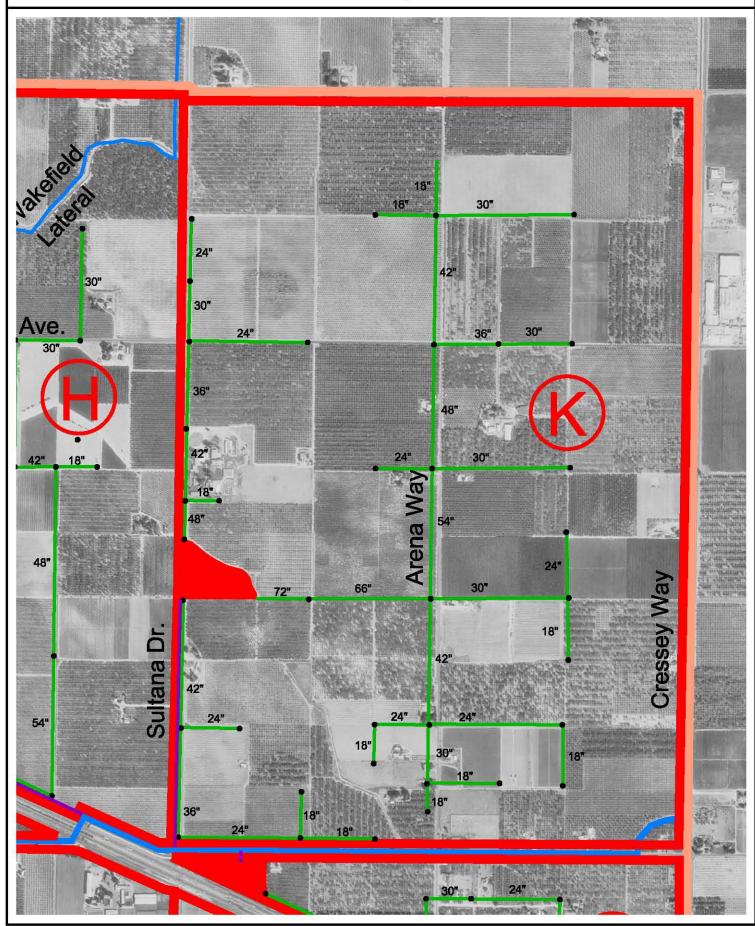


Exhibit A10 Enlargement of Drainage Zone J

Scale: 1" = 1,000'

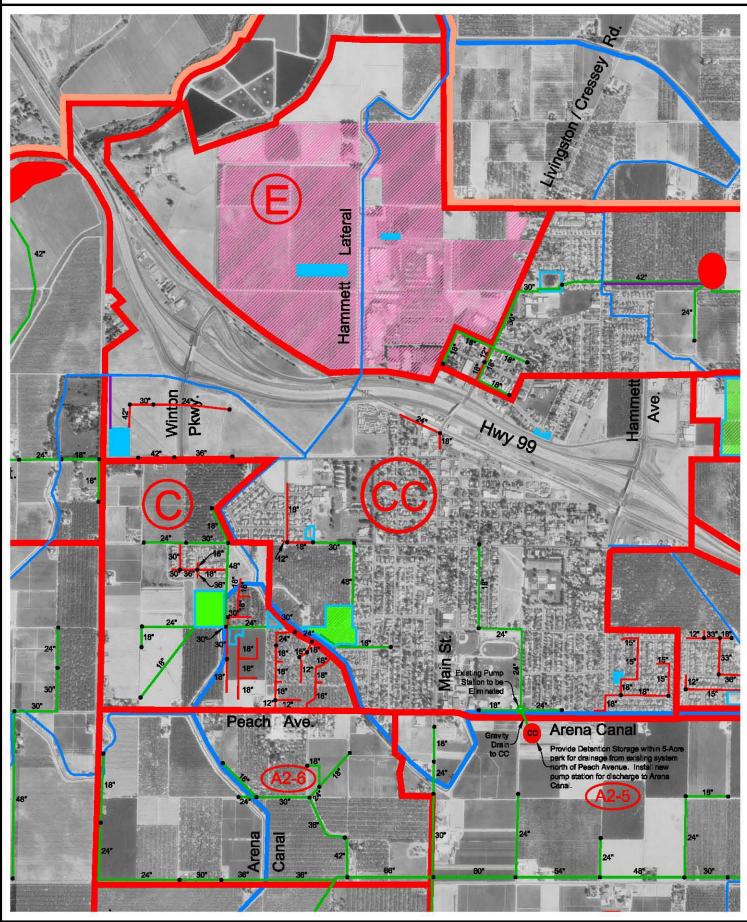


Exhibit A11 Enlargement of Drainage Zone K Scale: 1" = 1,000'

Exhibit A13 Enlargement of Drainage Zone CC Scale: 1" = 1,500'

List of Tables

Table 1
Impervious Cover Values for Different Land Uses

Land Use Type	Percent Impervious Cover
Low-Density Residential	40%
Medium-Density Residential	55%
High-Density Residential	65%
All Commercial Designations*	85%
Mixed Use	65%
Limited Industrial/Light Industrial	85%
General Industrial	90%
Schools	30%
Parks/Open Space	15%
Conservation Reserve	15%
Urban Reserve	55%

*Includes Neighborhood Commercial, Office, Service Commercial, Highway Commercial, and Community Commercial

Drainage Zone	Drainage Zone Area (ac)	Drainage Zone Area (sq mi)	Land Use Description	Percentage of Land Use Type for Drainage Zone	Soil Type	% Pervious	Associated Curve No.	% Impervious	Associated Curve No.	Weighted Curve No. for Land Use Type	Weighted Curve No. for Drainage Zone
A1-1	113.4	0.177	Low-Density Residential	95.59%	А	60.0%	49	40.0%	98	68.6	69.6
			Neighborhood Commercial	4.41%	А	15.0%	49	85.0%	98	90.7	
A1-2	203.1	0.317	Low-Density Residential	76.82%	A	60.0%	49	40.0%	98	68.6	69.7
			Community Commercial	9.29%	А	15.0%	49	85.0%	98	90.7	
			Parks/Open Space	5.66%	А	85.0%	49	15.0%	98	56.4	
			Public Facilities (school site)	7.58%	А	70.0%	49	30.0%	98	63.7	
			Low-Density Residential	0.65%	С	60.0%	79	40.0%	98	86.6	
A2-1A	470.0	0.734	Urban Reserve	21.30%	А	45.0%	49	55.0%	98	76.0	84.8
			Service Commercial	4.25%	В	15.0%	69	85.0%	98	93.7	
			Highway Commercial	29.79%	В	15.0%	69	85.0%	98	93.7	
			Conservation Reserve	10.64%	В	85.0%	69	15.0%	98	73.4	
			Urban Reserve	34.02%	В	45.0%	69	55.0%	98	85.0	
A2-1	287.8	0.450	Low-Density Residential	13.08%	А	60.0%	49	40.0%	98	68.6	82.3
			Medium-Density Residential	11.21%	А	45.0%	49	55.0%	98	76.0	
			Service Commercial	3.47%	А	15.0%	49	85.0%	98	90.7	
			Limited Industrial	13.08%	А	15.0%	49	85.0%	98	90.7	
			Highway Commercial	13.37%	А	15.0%	49	85.0%	98	90.7	
			Urban Reserve	22.57%	А	45.0%	49	55.0%	98	76.0	
			Medium-Density Residential	1.87%	В	45.0%	69	55.0%	98	85.0	
			Service Commercial	3.47%	В	15.0%	69	85.0%	98	93.7	
			Highway Commercial	5.73%	В	15.0%	69	85.0%	98	93.7	
			Urban Reserve	12.15%	В	45.0%	69	55.0%	98	85.0	
A2-2	128.5	0.201	Low-Density Residential	80.10%	A	60.0%	49	40.0%	98	68.6	71.2
			Medium-Density Residential	11.67%	А	45.0%	49	55.0%	98	76.0	
			Neighborhood Commercial	3.12%	А	15.0%	49	85.0%	98	90.7	
			Low-Density Residential	2.00%	В	60.0%	69	40.0%	98	80.6	
			Neighborhood Commercial	3.11%	В	15.0%	69	85.0%	98	93.7	

Drainage Zone	Drainage Zone Area (ac)	Drainage Zone Area (sq mi)	Land Use Description	Percentage of Land Use Type for Drainage Zone	Soil Type	% Pervious	Associated Curve No.	% Impervious	Associated Curve No.	Weighted Curve No. for Land Use Type	Weighted Curve No. for Drainage Zone
A2-3	64.8	0.101	Urban Reserve	99.41%	Α	45.0%	49	55.0%	98	76.0	76.1
			Urban Reserve	0.59%	В	45.0%	69	55.0%	98	85.0	
A2-4	206.0	0.322	Low-Density Residential	27.23%	А	60.0%	49	40.0%	98	68.6	76.5
			Medium-Density Residential	19.81%	А	45.0%	49	55.0%	98	76.0	
			Neighborhood Commercial	4.95%	А	15.0%	49	85.0%	98	90.7	
			Low-Density Residential	4.81%	С	60.0%	79	40.0%	98	86.6	
			Medium-Density Residential	3.49%	С	45.0%	79	55.0%	98	89.5	
			Neighborhood Commercial	0.87%	С	15.0%	79	85.0%	98	95.2	
			Urban Reserve	33.01%	А	45.0%	49	55.0%	98	76.0	
			Urban Reserve	2.43%	В	45.0%	69	55.0%	98	85.0	
			Urban Reserve	3.40%	С	45.0%	79	55.0%	98	89.5	
A2-5	316.6	0.495	Low-Density Residential	75.77%	А	60.0%	49	40.0%	98	68.6	71.2
			Medium-Density Residential	2.17%	А	45.0%	49	55.0%	98	76.0	
			High-Density Residential	6.11%	А	35.0%	49	65.0%	98	80.9	
			Neighborhood Commercial	3.22%	А	15.0%	49	85.0%	98	90.7	
			Parks/Open Space	2.27%	А	85.0%	49	15.0%	98	56.4	
			Public Facilities (school site)	2.17%	А	70.0%	49	30.0%	98	63.7	
			Low-Density Residential	3.61%	В	60.0%	69	40.0%	98	80.6	
			Low-Density Residential	2.34%	С	60.0%	79	40.0%	98	86.6	
			High-Density Residential	2.34%	С	35.0%	79	65.0%	98	91.4	
A2-6	299.5	0.468	Low-Density Residential	77.99%	А	60.0%	49	40.0%	98	68.6	72.0
			Medium-Density Residential	8.71%	А	45.0%	49	55.0%	98	76.0	
			High-Density Residential	3.39%	А	35.0%	49	65.0%	98	80.9	
			Neighborhood Commercial	3.57%	А	15.0%	49	85.0%	98	90.7	
			Medium-Density Residential	2.34%	С	45.0%	79	55.0%	98	89.5	
			Neighborhood Commercial	4.00%	С	15.0%	79	85.0%	98	95.2	
A3-1	97.5	0.152	Urban Reserve	68.62%	А	45.0%	49	55.0%	98	76.0	78.8
			Urban Reserve	31.38%	В	45.0%	69	55.0%	98	85.0	
A3-2	64.3	0.100	Urban Reserve	100.00%	А	45.0%	49	55.0%	98	76.0	76.0

Drainage Zone	Drainage Zone Area (ac)	Drainage Zone Area (sq mi)	Land Use Description	Percentage of Land Use Type for Drainage Zone	Soil Type	% Pervious	Associated Curve No.	% Impervious	Associated Curve No.	Weighted Curve No. for Land Use Type	Weighted Curve No. for Drainage Zone
A3-3	116.1	0.181	Low-Density Residential	25.84%	А	60.0%	49	40.0%	98	68.6	75.7
			Urban Reserve	62.45%	А	45.0%	49	55.0%	98	76.0	
			Urban Reserve	11.71%	С	45.0%	79	55.0%	98	89.5	
В	938.8	1.467	Low-Density Residential	59.54%	А	60.0%	49	40.0%	98	68.6	71.8
			Medium-Density Residential	4.73%	А	45.0%	49	55.0%	98	76.0	
			Community Commercial	0.99%	А	15.0%	49	85.0%	98	90.7	
			Public Facilities (school site)	2.03%	А	70.0%	49	30.0%	98	63.7	
			Urban Reserve	30.15%	А	45.0%	49	55.0%	98	76.0	
			Low-Density Residential	1.15%	С	60.0%	79	40.0%	98	86.6	
			Medium-Density Residential	0.43%	С	45.0%	79	55.0%	98	89.5	
			Urban Reserve	0.98%	С	45.0%	79	55.0%	98	89.5	
С	250.1	0.391	Parks/Open Space	1.76%	А	85.0%	49	15.0%	98	56.4	70.4
			Public Facility	13.76%	А	70.0%	49	30.0%	98	63.7	
			Low-Density Residential	67.61%	А	60.0%	49	40.0%	98	68.6	
			Medium-Density Residential	6.16%	А	45.0%	49	55.0%	98	76.0	
			Highway Commercial	7.70%	А	15.0%	49	85.0%	98	90.7	
			Low-Density Residential	3.01%	С	60.0%	79	40.0%	98	86.6	
D	443.9	0.694	Low-Density Residential	14.24%	А	60.0%	49	40.0%	98	68.6	79.7
			Medium-Density Residential	10.59%	А	45.0%	49	55.0%	98	76.0	
			High-Density Residential	1.58%	А	35.0%	49	65.0%	98	80.9	
			Community Commercial	4.39%	А	15.0%	49	85.0%	98	90.7	
			Service Commercial	6.31%	А	15.0%	49	85.0%	98	90.7	
			Public Facility	1.35%	А	70.0%	49	30.0%	98	63.7	
			Parks/Open Space	6.10%	А	85.0%	49	15.0%	98	56.4	
			Low-Density Residential	10.28%	В	60.0%	69	40.0%	98	80.6	
			Parks/Open Space	6.10%	В	85.0%	69	15.0%	98	73.4	
			Low-Density Residential	37.48%	С	60.0%	79	40.0%	98	86.6	
			Medium-Density Residential	0.68%	С	45.0%	79	55.0%	98	89.5	
			Public Facility	0.90%	С	70.0%	79	30.0%	98	84.7	

Drainage Zone	Drainage Zone Area (ac)	Drainage Zone Area (sq mi)	Land Use Description	Percentage of Land Use Type for Drainage Zone	Soil Type	% Pervious	Associated Curve No.	% Impervious	Associated Curve No.	Weighted Curve No. for Land Use Type	Weighted Curve No. for Drainage Zone
E	473.8	0.740	Industrial	98.48%	А	10.0%	49	90.0%	98	93.1	92.8
			Medium-Density Residential	1.52%	А	45.0%	49	55.0%	98	76.0	
F	414.2	0.647	Low-Density Residential	65.11%	А	60.0%	49	40.0%	98	68.6	72.5
			Medium-Density Residential	2.36%	А	45.0%	49	55.0%	98	76.0	
			High-Density Residential	5.10%	А	35.0%	49	65.0%	98	80.9	
			Highway Commercial	7.43%	А	15.0%	49	85.0%	98	90.7	
			Community Commercial	1.44%	А	15.0%	49	85.0%	98	90.7	
			Urban Reserve	14.44%	А	45.0%	49	55.0%	98	76.0	
			Parks/Open Space	2.10%	А	85.0%	49	15.0%	98	56.4	
			Urban Reserve	2.02%	В	45.0%	69	55.0%	98	85.0	
G	205.8	0.322	Low-Density Residential	19.44%	А	60.0%	49	40.0%	98	68.6	81.0
			High-Density Residential	7.78%	А	35.0%	49	65.0%	98	80.9	
			Service Commercial	53.34%	А	15.0%	49	85.0%	98	90.7	
			Public Facilities	14.89%	А	70.0%	49	30.0%	98	63.7	
			Public Facilities	4.55%	В	70.0%	69	30.0%	98	77.7	
Н	447.6	0.699	Low-Density Residential	1.34%	А	60.0%	49	40.0%	98	68.6	81.1
			Highway Commercial	5.75%	А	15.0%	49	85.0%	98	90.7	
			Urban Reserve	60.21%	А	45.0%	49	55.0%	98	76.0	
			Low-Density Residential	3.13%	В	60.0%	69	40.0%	98	80.6	
			Highway Commercial	17.26%	В	15.0%	69	85.0%	98	93.7	
			Urban Reserve	12.31%	В	45.0%	69	55.0%	98	85.0	
I	200.8	0.314	Low-Density Residential	27.71%	А	60.0%	49	40.0%	98	68.6	84.5
			Service Commercial	34.26%	А	15.0%	49	85.0%	98	90.7	
			Limited Industrial	31.87%	А	15.0%	49	85.0%	98	90.7	
			Low-Density Residential	1.91%	В	60.0%	69	40.0%	98	80.6	
			Service Commercial	2.00%	В	15.0%	69	85.0%	98	93.7	
			Service Commercial	2.25%	С	15.0%	79	85.0%	98	95.2	

Drainage Zone	Drainage Zone Area (ac)	Drainage Zone Area (sq mi)	Land Use Description	Percentage of Land Use Type for Drainage Zone	Soil Type	% Pervious	Associated Curve No.	% Impervious	Associated Curve No.	Weighted Curve No. for Land Use Type	Weighted Curve No. for Drainage Zone
J	98.2	0.153	Low-Density Residential	62.37%	А	60.0%	49	40.0%	98	68.6	69.0
			Parks/Open Space	23.00%	А	85.0%	49	15.0%	98	56.4	
			Limited Industrial	14.63%	А	15.0%	49	85.0%	98	90.7	
К	960.0	1.500	Medium-Density Residential	1.35%	А	45.0%	49	55.0%	98	76.0	83.5
			Highway Commercial	6.25%	А	15.0%	49	85.0%	98	90.7	
			Urban Reserve	20.31%	А	45.0%	49	55.0%	98	76.0	
			Medium-Density Residential	0.73%	В	45.0%	69	55.0%	98	85.0	
			Highway Commercial	6.25%	В	15.0%	69	85.0%	98	93.7	
			Conservation Resource	4.17%	В	85.0%	69	15.0%	98	73.4	
			Urban Reserve	60.94%	В	45.0%	69	55.0%	98	85.0	
L	160.0	0.250	Highway Commercial	2.81%	А	15.0%	49	85.0%	98	90.7	81.8
			Conservation Resource	17.50%	А	85.0%	49	15.0%	98	56.4	
			Highway Commercial	53.44%	В	15.0%	69	85.0%	98	93.7	
			Conservation Resource	26.25%	В	85.0%	69	15.0%	98	73.4	

Table 3
Time of Concentration & Tlag Calculation Worksheet

Drai	nage Zone & General Location:	Corresponding Exh	nibits/Descriptions:	Date:	
	Zone A1-1, Southwest Portion of Study Area	Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to T $_c$ onl	y)			
	Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n(TR-55, Table 3-1)	0.011			
3.	Flow Length, L (total L \leq 300 feet) ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
5.	Land Slope, s	0,005			Subtotal of T _t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$ hr	0.11			<u>0.11</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicable to T $_c$ or	nly)			
	Segment ID	4 to B			
7	•	A to B Concrete/Asphalt			
7. 8.	Surface Description (TR-55, Table 3-1)	0.011			
8. 9.	Manning's Roughness Coefficient, $n(TR-55, Table 3-1)$ Flow Length, L (total L \leq 300 feet) ft	300			
	100-yr, 24-hr Rainfall, P_{100} in	2,86			
10.	Land Slope, s	0.005			Subtotal of T _t
11. 12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$	0.09			0.09
12.	Compute $T_t = [0.007 (TL)] / [F_{100} S]$	0.09			0.03
Sha	llow Concentrated Flow for 10-yr & 100-yr Storm Events				
	Segment ID				
13.	Surface Description (paved or unpaved)				
14.	Flow Length, Lft				
15.	Watercourse Slope, s ft/ft				
16.	Average Velocity, V (TR-55, Figure 3-1)ft/s				Subtotal of T_t
17.	Compute $T_t = L / (3600V)$ hr				<u>0.00</u>
Pipe	Flow for 10-yr & 100-yr Storm Events				
	Segment ID	B to C			
18.	Average Velocity, V	2.00	C to D 2.00		
10. 19.	Flow Length, L	1,200	900		Subtotal of T _t
19. 20.	Compute $T_t = L / (3600V)$	0.17	0.13		<u>0.29</u>
		0.17	0.10	_	0.22
Con	ppute T _c for 10-yr & 100-yr Storm Events				
21.	Watershed or Subarea $T_{c\;10}$ (add T_{ι} in steps 6, 17, & 25) hr	0.11	0.00	0.29	<u>0.40</u>
		Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c\;100}$ (add T_t in steps 12, 17, & 25) hr	0.09	0.00	0.29	<u>0.38</u>
		Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 Tt Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc) hr				<u>0.24</u>

Table 3
Time of Concentration & Tlag Calculation Worksheet

Drai	nage Zone & General Location:		Corresponding Exh	ibits/Descriptions:	Date:	
	Zone A1-2, Southwest Portion of Study Area		Exhibit A		Octobe	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to	T _c only	y)			
	Segn	nent ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)		0.011			
3.	Flow Length, L (total L ≤ 300 feet)		300			
4.	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
5.	Land Slope, s	ft/ft	0.005			Subtotal of T _t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.11			<u>0.11</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicable t	o T _c on	nly)			
	Segn	nent ID	A to B			
7.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)		0.011			
9.	Flow Length, L (total L ≤ 300 feet)		300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
11.	Land Slope, s	ft/ft	0.005			Subtotal of T_t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$	hr	0.09			<u>0.09</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Storm E	Events				
	Segn	nent ID				
13.	Surface Description (paved or unpaved)					
14.	Flow Length, L	ft				
15.	Watercourse Slope, s	ft/ft				
16.	Average Velocity, V (TR-55, Figure 3-1)					Subtotal of T _t
17.	Compute $T_t = L / (3600V)$	hr				<u>0.00</u>
Pipe	Flow for 10-yr & 100-yr Storm Events					
	Segn	nent ID	B to C	C to "Basin A-1"		
18.	Average Velocity, V	ft/s	2.00	2.00		
19.	Flow Length, L	ft	1,200	750		Subtotal of T_t
20.	Compute $T_t = L / (3600V)$	hr	0.17	0.10		<u>0.27</u>
Con	ppute T _c for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25)	hr	0.11	0.00	0.27	<u>0.38</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25)	hr	0.09	0.00	0.27	<u>0.36</u>
			Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)	hr			I	<u>0.23</u>
					•	

Table 3
Time of Concentration & Tlag Calculation Worksheet

Shee	Zone A2-1, Southeast Portion of Study Area	Exhibit A			
				Octob	er 7, 2004
1	t Flow for 10-yr 24-hr Storm Event (Applicable to T $_c$ on	ly)			
1	Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
3.	Flow Length, L (total L < 300 feet) ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
5.	Land Slope, s ft/ft	0.008			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$ hr	0.09			<u>0.09</u>
Shee	t Flow for 100-yr 24-hr Storm Event (Applicable to T $_c$ o	nly)			
	Segment ID	A to B		[]	
7.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
	Flow Length, L (total L ≤ 300 feet) ft	300			
	100-yr, 24-hr Rainfall, P ₁₀₀ in	2.86			
	Land Slope, s	0.008			Subtotal of T _t
	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$ hr	0.08			<u>0.08</u>
Shall	ow Concentrated Flow for 10-yr & 100-yr Storm Events				
	Segment ID				
13.	Surface Description (paved or unpaved)				
	Flow Length, L				
	Watercourse Slope, sft/ft				
	Average Velocity, V (TR-55, Figure 3-1)				Subtotal of T _t
	Compute $T_t = L / (3600V)$				<u>0.00</u>
Pipo	Flow for 10-yr & 100-yr Storm Events				
ripe	Flow for fo-yr & foo-yr Storin Events				
	Segment ID	B to D	D to F	F to G	
	Average Velocity, V ft/s	2.00	2.00	2.00	
19.	Flow Length, L ft	1,600	2,000	700	Subtotal of T _t
20.	Compute $T_t = L / (3600V)$	0.22	0.28	0.10	<u>0.60</u>
Сотр	pute T _c for 10-yr & 100-yr Storm Events				
21.	Watershed or Subarea $T_{c \ 10}$ (add T_i in steps 6, 17, & 25) hr	0.09	0.00	0.60	<u>0.69</u>
		Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c\ 100}$ (add T_t in steps 12, 17, & 25) hr	0.08	0.00	0.60	<u>0.68</u>
		Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
	TLAG (=0.6*Tc)hr				<u>0.41</u>

Table 3	
Time of Concentration & Tlag Calculation Worksheet	

Drai	nage Zone & General Location:		Corresponding Exh	nibits/Descriptions:	Date:	
	Zone A2-1A, Southeast Corner of Study Area		Exhibit A		June S	5, 2007
She	et Flow for 10-yr 24-hr Storm Event (Applicab	le to T _c only)				
		Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	0	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n(TR-55, Table 3		0,011			
3.	Flow Length, L (total L ≤ 300 feet)		300			
4.	10-yr, 24-hr Rainfall, P ₁₀		2.06			
5.	Land Slope, s	ft/ft	0.003			Subtotal of T _t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.13			<u>0.13</u>
She	et Flow for 100-yr 24-hr Storm Event (Applica	ble to T _c only	y)			
		Segment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)	•	Concrete/Asphalt			
7. 8.	Manning's Roughness Coefficient, n(TR-55, Table 3		0.011			
9.	Flow Length, L (total $L \leq 300$ feet)		300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀		2,86			
11.	Land Slope, s		0.003			Subtotal of Tt
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$		0.11			<u>0.11</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Sto	rm Events				
ona				I		
		Segment ID				
13.	Surface Description (paved or unpaved)					
14.	Flow Length, L					
15.	Watercourse Slope, s					0.1.4.4.4.7
16.	Average Velocity, V (TR-55, Figure 3-1)					Subtotal of T _t
17.	Compute $T_t = L / (3600V)$	hr				<u>0.00</u>
Pipe	Flow for 10-yr & 100-yr Storm Events					
		Segment ID	B to C	C to D		
18.	Average Velocity, V	ft/s	2.00	2.00		
19.	Flow Length, L	ft	2,600	5,000		Subtotal of T_t
20.	Compute $T_t = L / (3600V)$	hr	0.36	0.69		<u>1.06</u>
Con	npute T _c for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25	5) hr	0.13	0.00	1.06	<u>1.19</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c\ 100}$ (add T_t in steps 12, 17, &	25) hr	0.11	0.00	1.06	<u>1.17</u>
			Step 12 Tt Subtotal	Step 17 T _t Subtotal	Step 20 Tt Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)	hr			[<u>0.71</u>

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

	nage Zone & General Location:		Corresponding Exh	ibits/Descriptions:	Date:	
	Zone A2-2, Southeast Portion of Study Area		Exhibit A		Octob	er 7, 2004
Sheet Flow for 10-yr 24-hr Storm Event (Applicable to T_c only)						
	S	egment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table	3-1)	0.011			
3.	Flow Length, L (total L ≤ 300 feet)	ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
5.	Land Slope, s	ft/ft	0.003			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.12			<u>0.12</u>
She	et Flow for 100-yr 24-hr Storm Event (Applical	ble to T _c or	nly)			
	s	egment ID	A to B			
7.	- Surface Description (TR-55, Table 3-1)	•	Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table		0.011		I	
9.	Flow Length, L (total L ≤ 300 feet)		300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀		2,86			
11.	Land Slope, s		0.003			Subtotal of T _t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$		0.11			<u>0.11</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Sto	rm Events				
		Segment ID				
13.	Surface Description (paved or unpaved)	•				
14.	Flow Length, L					
15.	Watercourse Slope, s					
16.	Average Velocity, V (TR-55, Figure 3-1)					Subtotal of T _t
17.	Compute $T_t = L / (3600V)$					0.00
D '						
Pipe	e Flow for 10-yr & 100-yr Storm Events					
	S	egment ID	B to C	C to D	D to E	
18.	Average Velocity, V	ft/s	2.00	2.00	2.00	
19.	Flow Length, L	ft	1,000	1,800	1,300	Subtotal of T_t
20.	Compute $T_t = L / (3600V)$	hr	0.14	0.25	0.18	<u>0.57</u>
Con	npute T _c for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25	5) hr	0.12	0.00	0.57	<u>0.69</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, &	25) hr	0.11	0.00	0.57	<u>0.68</u>
	Watershed or Subarea T_{c100} (add T_t in steps 12, 17, &	25) hr		<i>0.00</i> Step 17 T _t Subtotal		<u>0.68</u> Total T _{c 100}

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

	Zone A2-3, Southeast Portion of Study Area t Flow for 10-yr 24-hr Storm Event (Applicable to T c	Exhibit A		Octob	er 7, 2004
Shee	t Flow for 10-yr 24-hr Storm Event (Applicable to T $_c$	only)			
		oniy)			
	Segment	ID A to B			
1.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
3.	Flow Length, L (total L < 300 feet) ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
5.	Land Slope, s ft/	ft 0.003			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$ hr	0.13			<u>0.13</u>
Shee	t Flow for 100-yr 24-hr Storm Event (Applicable to T $_c$	only)			
	Segment	ID A to B		[]	
7.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
	Flow Length, L (total L ≤ 300 feet) ft	300			
	100-yr, 24-hr Rainfall, P ₁₀₀ in	2.86			
	Land Slope, s				Subtotal of T _t
	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$				<u>0.11</u>
Shall	ow Concentrated Flow for 10-yr & 100-yr Storm Even	its			
	Segment				
13.	Surface Description (paved or unpaved)				
	Flow Length, Lft				
	Watercourse Slope, sft/	'ft			
	Average Velocity, V (TR-55, Figure 3-1)ft/				Subtotal of T _t
	Compute $T_t = L / (3600V)$				<u>0.00</u>
Pine	Flow for 10-yr & 100-yr Storm Events				
Tipe			T		
	Segment		C to D	D to E	
	Average Velocity, V ft/		2.00	2.00	
	Flow Length, L ft	1,100	1,000	700	Subtotal of T _t
20.	Compute $T_t = L / (3600V)$ hr	0.15	0.14	0.10	<u>0.39</u>
Сотр	oute T _c for 10-yr & 100-yr Storm Events				
21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr	0.13	0.00	0.39	<u>0.52</u>
		Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr	0.11	0.00	0.39	<u>0.50</u>
22.			· · · · · · · · · · · · · · · · · · ·		
22.			Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}

Table 3
Time of Concentration & Tlag Calculation Worksheet

Drai	nage Zone & General Location:	Corresponding Exh	nibits/Descriptions:	Date:	
	Zone A2-4, South Central Portion of Study Area	Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to T $_{c}$ onl	y)			
	Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
3.	Flow Length, L (total L ≤ 300 feet) ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
5.	Land Slope, s ft/ft	0.010			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}] \dots hr$	0.08			<u>0.08</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicable to T $_{ m c}$ or	nly)			
	Segment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
9.	Flow Length, L (total $L \leq 300$ feet) ft	300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀ in	2.86			
11.	Land Slope, s ft/ft	0.010			Subtotal of T_t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$ hr	0.07			<u>0.07</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Storm Events				
	Segment ID				
13.	Surface Description (paved or unpaved)				
14.	Flow Length, Lft				
15.	Watercourse Slope, sft/ft				
16.	Average Velocity, V (TR-55, Figure 3-1)ft/s				Subtotal of T_t
17.	Compute $T_t = L / (3600V)$ hr				<u>0.00</u>
Pipe	e Flow for 10-yr & 100-yr Storm Events				
	Segment ID	B to C	C to D	D to E	
18.	Average Velocity, V ft/s	2,00	2.00	2.00	
19.	Flow Length, L	1,200	1,000	3,900	Subtotal of T _t
20.	$\frac{1}{1} = L / (3600V) \dots hr$	0.17	0.14	0.54	<u>0.85</u>
Con	npute T _c for 10-yr & 100-yr Storm Events				
21.	Watershed or Subarea $T_{c \ 10}$ (add T, in steps 6, 17, & 25) hr	0.08	0.00	0.85	<u>0.93</u>
۲۱.		Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr	0.07	0.00	0.85	0.92
<i>22</i> .			Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)hr			[<u>0.56</u>
				L	

Table 3
Time of Concentration & Tlag Calculation Worksheet

Drai	nage Zone & General Location:	Corresponding Exh	nibits/Descriptions:	Date:	
	Zone A2-5, South Central Portion of Study Area	Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to T $_{ m c}$ onl	y)			
	Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
3.	Flow Length, L (total L < 300 feet) ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
5.	Land Slope, s ft/ft	0.010			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$ hr	0.08			<u>0.08</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicable to T $_{ m c}$ or	nly)			
	Segment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
9.	Flow Length, L (total L ≤ 300 feet) ft	300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀ in	2.86			
11.	Land Slope, s ft/ft	0.010			Subtotal of T_t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$ hr	0.07			<u>0.07</u>
Sha	low Concentrated Flow for 10-yr & 100-yr Storm Events				
	Segment ID				
13.	Surface Description (paved or unpaved)				
14.	Flow Length, Lft				
15.	Watercourse Slope, sft/ft				
16.	Average Velocity, V (TR-55, Figure 3-1)ft/s				Subtotal of T _t
17.	Compute $T_t = L / (3600V)$ hr				<u>0.00</u>
Pipe	Flow for 10-yr & 100-yr Storm Events				
	Segment ID	B to C	C to D	D to E	
18.	Average Velocity, V ft/s	2.00	2.00	2.00	
19.	Flow Length, L	1,000	2,100	3,900	Subtotal of T _t
20.	Compute $T_t = L / (3600V)$	0.14	0.29	0.54	<u>0.97</u>
Con	pute T _c for 10-yr & 100-yr Storm Events				
21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr	<i>0.08</i> Step 6 T _t Subtotal	0.00 Step 17 T _t Subtotal	0.97 Stop 20 T Subtotal	<u>1.05</u> Total T _{c 10}
		, .		Step 20 T _t Subtotal	
22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr	0.07	0.00	0.97	<u>1.04</u>
		Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)hr				<u>0.63</u>

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

Drai	nage Zone & General Location:	Corresponding Exh	nibits/Descriptions:	Date:	
	Zone A2-6, Southwest Portion of Study Area	Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to T $_c$ on	ly)			
	Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
3.	Flow Length, L (total $L \leq 300$ feet) ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
5.	Land Slope, s ft/ft	0.005			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$ hr	0.11			<u>0.11</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicable to T $_{ m c}$ of	nly)			
	Segment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
9.	Flow Length, L (total $L \leq 300$ feet) ft	300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀ in	2.86			
11.	Land Slope, s	0.005			Subtotal of T _t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$ hr	0.09			<u>0.09</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Storm Events				
	Segment ID				
13.	Surface Description (paved or unpaved)				
14.	Flow Length, L				
15.	Watercourse Slope, sft/ft				
16.	Average Velocity, V (TR-55, Figure 3-1)ft/s				Subtotal of T _t
17.	Compute $T_t = L / (3600V)$ hr				<u>0.00</u>
Pipe	e Flow for 10-yr & 100-yr Storm Events				
	Segment ID	B to D	D to E	E to F	
18.	Average Velocity, V ft/s	2.00	2.00	2.00	
19.	Flow Length, L	1,550	2,700	1,700	Subtotal of T _t
20.	Compute $T_t = L / (3600V)$	0.22	0.38	0.24	<u>0.83</u>
Con	npute T _c for 10-yr & 100-yr Storm Events				
21.	Watershed or Subarea T _{c 10} (add T _t in steps 6, 17, & 25) hr	0.11	0.00	0.83	0.94
		Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr	0.09	0.00	0.83	<u>0.92</u>
		Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

Zone A3-1, Southeast Portion of Study AreaExhibit ASheet Flow for 10-yr 24-hr Storm Event (Applicable to T_c only)Segment IDA to B1.Surface Description (TR-55, Table 3-1)2.Manning's Roughness Coefficient, n (TR-55, Table 3-1)3.Flow Length, L (total L \leq 300 feet) ft4.10-yr, 24-hr Rainfall, P ₁₀ in2.Length (total L \leq 300 feet) ft300		Octob	per 7, 2004
Segment IDA to B1.Surface Description (TR-55, Table 3-1)Concrete/Asphalt2.Manning's Roughness Coefficient, n (TR-55, Table 3-1) 0.011 3.Flow Length, L (total L \leq 300 feet) ft 300 4.10-yr, 24-hr Rainfall, P ₁₀ in 2.06			
1.Surface Description (TR-55, Table 3-1)Concrete/Asphalt2.Manning's Roughness Coefficient, n (TR-55, Table 3-1) 0.011 3.Flow Length, L (total L \leq 300 feet)			
2.Manning's Roughness Coefficient, n (TR-55, Table 3-1) 0.011 3.Flow Length, L (total L \leq 300 feet) ft 300 4.10-yr, 24-hr Rainfall, P ₁₀ in 2.06			
3. Flow Length, L (total L \leq 300 feet)	1	4	
4. 10-yr, 24-hr Rainfall, P ₁₀ in <i>2.06</i>			
	1		
5. Land Slope, s ft/ft 0.003			Subtotal of T_t
6. Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}] \dots hr$			<u>0.13</u>
Sheet Flow for 100-yr 24-hr Storm Event (Applicable to T_c only)			
Segment ID A to B			
7. Surface Description (TR-55, Table 3-1)			
8. Manning's Roughness Coefficient, n (TR-55, Table 3-1) 0.011			
9. Flow Length, L (total L ≤ 300 feet) ft 300			
10. 100-yr, 24-hr Rainfall, P ₁₀₀ in <i>2.86</i>			
11. Land Slope, s ft/ft 0.003	1		Subtotal of T _t
12. Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}] \dots hr$			<u>0.11</u>
Shallow Concentrated Flow for 10-yr & 100-yr Storm Events			
Segment ID			
13. Surface Description (paved or unpaved)			
14. Flow Length, L			
15. Watercourse Slope, sft/ft			
16. Average Velocity, V (TR-55, Figure 3-1) ft/s			Subtotal of T_t
17. Compute T _t = L / (3600V)hr			<u>0.00</u>
Pipe Flow for 10-yr & 100-yr Storm Events			
Segment ID B to D	D to E	E to F	
18. Average Velocity, V Z.00	2.00	2.00	
19. Flow Length, L	500	2,100	Subtotal of T _t
20. Compute $T_t = L / (3600V)$	0.07	0.29	<u>0.54</u>
Compute T _c for 10-yr & 100-yr Storm Events			
21. Watershed or Subarea T _{c 10} (add T _t in steps 6, 17, & 25) hr 0.13	0.00	0.54	<u>0.67</u>
	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
Step 6 T _t Subtotal			
Step 6 T_t Subtotal 22. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr <i>0.11</i>	0.00	0.54	<u>0.65</u>
22. Watershed or Subarea T _{c 100} (add T _t in steps 12, 17, & 25) hr 0.11	0.00 Step 17 T _t Subtotal		<u><i>0.65</i></u> Total T _{c 100}

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

	nage Zone & General Location:		Corresponding Exh	ibits/Descriptions:	Date:	
	Zone A3-2, Southeast Portion of Study Area		Exhibit A		Octob	er 7, 2004
hee	et Flow for 10-yr 24-hr Storm Event (Applicable to 1	_c on	(y)			
	Segme	nt ID	A to B			
	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
	Manning's Roughness Coefficient, n (TR-55, Table 3-1)		0.011			
	Flow Length, L (total L ≤ 300 feet)	ft	300			
	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
	Land Slope, s	. ft/ft	0.003			Subtotal of T _t
	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$. hr	0.13			<u>0.13</u>
he	et Flow for 100-yr 24-hr Storm Event (Applicable to	T _c o	nly)			
	Segme	nt ID	A to B			
	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
	Manning's Roughness Coefficient, n (TR-55, Table 3-1)		0.011			
	Flow Length, L (total $L \leq 300$ feet)	ft	300			
).	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
	Land Slope, s	. ft/ft	0.003			Subtotal of T _t
	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$.hr	0.11			<u>0.11</u>
hal	low Concentrated Flow for 10-yr & 100-yr Storm Ev	rents				
	Segme	nt ID				
	Surface Description (paved or unpaved)					
	Flow Length, L	. ft				
5.	Watercourse Slope, s	. ft/ft				
5.	Average Velocity, V (TR-55, Figure 3-1)	. ft/s				Subtotal of T _t
	Compute $T_t = L / (3600V)$. hr				<u>0.00</u>
pe	Flow for 10-yr & 100-yr Storm Events					
	Segme	nt ID	B to C	C to D	D to E	
	Average Velocity, V		2.00	2.00	2.00	
	Flow Length, L		300	1,000	1,500	Subtotal of T
	Compute T _t = L / (3600V)	. hr	0.04	0.14	0.21	<u>0.39</u>
	Compute $T_t = L / (3600V)$. hr	0.04	0.14	0.21	<u>0.39</u>
om	ppute T _c for 10-yr & 100-yr Storm Events			0.14 0.00		
om			<i>0.04</i> <i>0.13</i> Step 6 T _t Subtotal	0.00	0.21 0.39 Step 20 T _t Subtotal	<u>0.39</u> <u>0.52</u> Total T _{c 10}
).).	ppute T _c for 10-yr & 100-yr Storm Events	hr	0.13	0.00	0.39	<u>0.52</u>
	Watershed or Subarea T _{c 10} (add T _t in steps 6, 17, & 25)	hr	0.13 Step 6 T _t Subtotal 0.11	<i>0.00</i> Step 17 T _t Subtotal	0.39 Step 20 T _t Subtotal 0.39	<u>0.52</u> Total T _{c 10}

Table 3
Time of Concentration & Tlag Calculation Worksheet

	nage Zone & General Location:	Corresponding Ext	nibits/Descriptions:	Date:	
	Zone A3-3, South Central Portion of Study Area	Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to T $_c$ \circ	only)			
	Segment I	D A to B			
1.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
3.	Flow Length, L (total $L \leq 300$ feet) ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
5.	Land Slope, s ft/	it <i>0.003</i>			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$ hr	0.13			<u>0.13</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicable to T $_{ m c}$	only)			
	Segment I	D A to B			
7.	Surface Description (TR-55, Table 3-1)	Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
9.	Flow Length, L (total $L \leq 300$ feet)	300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀ in	2.86			
11.	Land Slope, sft/	it <i>0.003</i>			Subtotal of T_t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$ hr	0.11			<u>0.11</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Storm Even	ts			
	Segment				
13.	Surface Description (paved or unpaved)				
14.	Flow Length, L				
15.	Watercourse Slope, sft/	ít .			
16.	Average Velocity, V (TR-55, Figure 3-1)				Subtotal of T _t
17.	Compute $T_t = L / (3600V)$ hr				0.00
0					
Pipe	e Flow for 10-yr & 100-yr Storm Events				
	Segment I	D B to D	D to E	E to F	
18.	Average Velocity, V ft/	s <i>2.00</i>	2.00	2.00	
19.	Flow Length, Lft	1,200	500	3,600	Subtotal of T_t
	Compute $T_t = L / (3600V)$	0.17	0.07	0.50	<u>0.74</u>
20.					
	npute T _c for 10-yr & 100-yr Storm Events				
	npute T _c for 10-yr & 100-yr Storm Events Watershed or Subarea T _{c 10} (add T _i in steps 6, 17, & 25) hr	0.13	0.00	0.74	<u>0.87</u>
Con		0.13 Step 6 T _t Subtotal		0.74 Step 20 T _t Subtotal	<u><i>0.87</i></u> Total T _{c 10}
Con		Step 6 T _t Subtotal			
Con 21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr	Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

Drai	nage Zone & General Location:		Corresponding Exh	nibits/Descriptions:	Date:	
	Zone B, Southwest Corner of Study Area		Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable	to T_c only	y)			
	Se	gment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-	1)	0.011			
3.	Flow Length, L (total L ≤ 300 feet)	ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
5.	Land Slope, s	ft/ft	0.013			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.07			<u>0.07</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicabl	e to T _c oi	nly)			
	Se	gment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table 3-	1)	0.011			
9.	Flow Length, L (total L ≤ 300 feet)	ft	300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
11.	Land Slope, s	ft/ft	0.013			Subtotal of T_t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$	hr	0.06			<u>0.06</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Stori	n Events				
	Se	gment ID				
13.	Surface Description (paved or unpaved)	•				
14.	Flow Length, L					
15.	Watercourse Slope, s					
16.	Average Velocity, V (TR-55, Figure 3-1)	ft/s				Subtotal of T_t
17.	Compute T _t = L / (3600V)	hr				<u>0.00</u>
Pipe	e Flow for 10-yr & 100-yr Storm Events					
-		gment ID	B to D	D to E	E to "Basin B"	
18.	Average Velocity, V	-	2.00	2.00	2.00	
19.	Flow Length, L		3,965	2,482	1,647	Subtotal of T _t
20.	Compute $T_t = L / (3600V)$		0.55	0.34	0.23	<u>1.12</u>
Con	npute T $_{c}$ for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea $T_{c,10}$ (add T_t in steps 6, 17, & 25).	hr	0.07	0.00	1.12	<u>1.19</u>
<u> </u>			Step 6 T _t Subtotal	Step 17 T _t Subtotal		Total T _{c 10}
22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25	5)hr	0.06	0.00	1.12	<u>1.18</u>
		-,		Step 17 T _t Subtotal		Total T _{c 100}
23.	TLAG (=0.6*Tc)	hr]	<u>0.72</u>
					L	

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

Drai	nage Zone & General Location:		Corresponding Exh	ibits/Descriptions:	Date:	
	Zone C, Western Portion of Study Area		Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicab	le to T _c onl	y)			
	s	Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table	3-1)	0.011			
3.	Flow Length, L (total L ≤ 300 feet)	ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
5.	Land Slope, s	ft/ft	0.005			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.11			<u>0.11</u>
She	et Flow for 100-yr 24-hr Storm Event (Applica	ble to T _c or	nly)			
	s	Segment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table		0.011			
9.	Flow Length, L (total L \leq 300 feet)		300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
11.	Land Slope, s	ft/ft	0.005			Subtotal of T _t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$	hr	0.09			<u>0.09</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Sto	orm Events				
		Segment ID				
13.	Surface Description (paved or unpaved)	•				
14.	Flow Length, L					
15.	Watercourse Slope, s					
16.	Average Velocity, V (TR-55, Figure 3-1)					Subtotal of T _t
17.	Compute $T_t = L / (3600V)$					<u>0.00</u>
Pipe	e Flow for 10-yr & 100-yr Storm Events					
		Segment ID	0.4.0	D 44 5		
10		-	B to D	D to E 2.00	E to "Basin C"	
18. 19.	Average Velocity, V Flow Length, L		2.00 1,350	1,300	2.00 800	Subtotal of T _t
20.	Compute $T_t = L / (3600V)$		0.19	0.18	0.11	<u>0.48</u>
			0.17	0.10	0.11	0.40
Con	npute T $_{c}$ for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea T_{c10} (add T_t in steps 6, 17, & 2	5) hr	0.11	0.00	0.48	<u>0.59</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c\;100}$ (add T_t in steps 12, 17, 8	a 25) hr	0.09	0.00	0.48	<u>0.57</u>
			Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)	hr]	<u>0.35</u>
					L	

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

Drai	nage Zone & General Location:		Corresponding Exh	nibits/Descriptions:	Date:	
	Zone D, Northwest Corner of Study Area		Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applica	able to T _c onl	y)			
		Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	-	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Tal	ble 3-1)	0.011			
3.	Flow Length, L (total L ≤ 300 feet)	ft	300			
1.	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
5.	Land Slope, s	ft/ft	0.008			Subtotal of T_t
S.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.09			<u>0.09</u>
She	et Flow for 100-yr 24-hr Storm Event (Applic	cable to T _c or	nly)			
		Segment ID	A to B			
	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
3.	Manning's Roughness Coefficient, n (TR-55, Tal		0.011			
).	Flow Length, L (total L ≤ 300 feet)		300			
0.	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
1.	Land Slope, s	ft/ft	0.008			Subtotal of T _t
2.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}] \dots$	hr	0.07			<u>0.07</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr S	Storm Events				
		Segment ID				
3.	Surface Description (paved or unpaved)					
4.	Flow Length, L	ft				
5.	Watercourse Slope, s	ft/ft				
6.	Average Velocity, V (TR-55, Figure 3-1)	ft/s				Subtotal of T _t
7.	Compute $T_t = L / (3600V)$					<u>0.00</u>
Pipe	e Flow for 10-yr & 100-yr Storm Events					
		Segment ID	B to C	C to D	D to "Basin D"	
8.	Average Velocity, V	•	2.00	2.00	2.00	
9.	Flow Length, L		3,965	2,482	1,647	Subtotal of T _t
20.	Compute T _t = L / (3600V)		0.55	0.34	0.23	<u>1.12</u>
Con	npute T _c for 10-yr & 100-yr Storm Events					
1.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, 8	& 25) hr	0.09	0.00	1.12	<u>1.21</u>
			Step 6 T _t Subtotal		Step 20 T _t Subtotal	Total T _{c 10}
2.	Watershed or Subarea $T_{c \ 100}$ (add T, in steps 12, 17	7, & 25) hr	0.07	0.00	1.12	<u>1.19</u>
				Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
3.	TLAG (=0.6*Tc)	hr]	<u>0.73</u>
					L	

	Table 3	
Time of Concentration	& Tlag Calcula	ation Worksheet

	age Zone & General Location:		Corresponding Exh	nibits/Descriptions:	Date:	
	Zone E, Northwest Corner of Study Area		Exhibit A		Octob	er 7, 2004
Shee	t Flow for 10-yr 24-hr Storm Event (Applic	able to T _c onl	y)			
		Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Conrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Ta	able 3-1)	0.011			
3.	Flow Length, L (total L < 300 feet)	ft	100			
	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
i.	Land Slope, s	ft/ft	0.02			Subtotal of T_t
j.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}] \dots$	hr	0.03			<u>0.03</u>
Shee	t Flow for 100-yr 24-hr Storm Event (Appli	cable to T _c or	nly)			
		Segment ID	A to B			
	Surface Description (TR-55, Table 3-1)		Conrete/Asphalt			
	Manning's Roughness Coefficient, n (TR-55, Ta		0.011			
	Flow Length, L (total L ≤ 300 feet)	ft	100			
0.	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
1.	Land Slope, s	ft/ft	0.02			Subtotal of T _t
2.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}] \dots$	hr	0.02			<u>0.02</u>
Shall	ow Concentrated Flow for 10-yr & 100-yr \$	Storm Events				
		Segment ID				
3.	Surface Description (paved or unpaved)					
4.	Flow Length, L	ft				
5.	Watercourse Slope, s	ft/ft				
6.	Average Velocity, V (TR-55, Figure 3-1)	ft/s				Subtotal of T _t
7.	Compute T _t = L / (3600V)	hr				<u>0.00</u>
ipe	Flow for 10-yr & 100-yr Storm Events					
		Segment ID	B to D	D to E	E to "Basin E"	
8.	Average Velocity, V	•	2.00	2.00	2.00	
9.	Flow Length, L		3,166	3,024	1,275	Subtotal of T _t
0.	Compute T _t = L / (3600V)		0.44	0.42	0.18	<u>1.04</u>
Com	oute T _c for 10-yr & 100-yr Storm Events					
	Watershed or Subarea T _{c 10} (add T _t in steps 6, 17,	& 25) hr	0.03	0.00	1.04	1.07
1.			Step 6 T _t Subtotal		Step 20 T _t Subtotal	Total T _{c 10}
1.						
	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 1	7, & 25) hr	0.02	0.00	1.04	<u>1.06</u>
	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 1	7, & 25) hr		<i>0.00</i> Step 17 T _t Subtotal		<u>1.06</u> Total T _{c 100}

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

	inage Zone & General Location:	Corresponding Exh	nibits/Descriptions:	Date:	
	Zone F, North Central Portion of Study Area	Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to T $_c$ on	ly)			
	Segment ID	A to B			
۱.	Surface Description (TR-55, Table 3-1)	Conrete/Asphalt			
<u>.</u>	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
5.	Flow Length, L (total L \leq 300 feet) ft	100			
	10-yr, 24-hr Rainfall, P ₁₀ in	2.06			
j.	Land Slope, s ft/ft	0.02			Subtotal of T_t
5 .	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}] \dots hr$	0.03			<u>0.03</u>
he	et Flow for 100-yr 24-hr Storm Event (Applicable to T $_c$ o	nly)			
	Segment ID	A to B			
	Surface Description (TR-55, Table 3-1)	Conrete/Asphalt			
	Manning's Roughness Coefficient, n (TR-55, Table 3-1)	0.011			
	Flow Length, L (total L \leq 300 feet) ft	100			
0.	100-yr, 24-hr Rainfall, P ₁₀₀ in	2.06			
1.	Land Slope, s ft/ft	0.02			Subtotal of T_t
2.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$ hr	0.03			<u>0.03</u>
sha	llow Concentrated Flow for 10-yr & 100-yr Storm Events				
	Segment ID				
3.	Surface Description (paved or unpaved)				
4.	Flow Length, Lft				
5.	Watercourse Slope, sft/ft				
6.	Average Velocity, V (TR-55, Figure 3-1)ft/s				Subtotal of T_t
7.	Compute $T_t = L / (3600V)$ hr				<u>0.00</u>
ipe	e Flow for 10-yr & 100-yr Storm Events				
	Segment ID	B to D	D to E	E to "Basin F"	
8.	Average Velocity, V ft/s	2.00	2.00	2.00	
9.	Flow Length, L	2,000	1,500	2,250	Subtotal of T _t
0.	Compute T _t = L / (3600V) hr	0.28	0.21	0.31	<u>0.80</u>
	npute T_c for 10-yr & 100-yr Storm Events				
ΟÎ		0.02	0.00	0.80	<u>0.83</u>
	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr	0.03			
	Watershed or Subarea T_{c10} (add T_t in steps 6, 17, & 25) hr	Step 6 T _t Subtotal		Step 20 Tt Subtotal	Total T _{c 10}
1.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr			Step 20 T _t Subtotal	Total T _{c 10}
1.		Step 6 T _t Subtotal	Step 17 T _t Subtotal	0.80	

	Table 3	
Time of Concentration	& Tlag Calcula	ation Worksheet

Drai	inage Zone & General Location:		Corresponding Exh	nibits/Descriptions:	Date:	
	Zone G, Central Portion of Study Area		Exhibit A		Octob	er 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applica	ble to T _c onl	y)			
		Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Conrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Tabl		0.011			
3.	Flow Length, L (total L ≤ 300 feet)	ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
5.	Land Slope, s	ft/ft	0.004			Subtotal of T_t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.12			<u>0.12</u>
She	et Flow for 100-yr 24-hr Storm Event (Applic	able to T _c or	nly)			
		Segment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)		Conrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Tabl		0.011			
9.	Flow Length, L (total L ≤ 300 feet)		300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
11.	Land Slope, s	ft/ft	0.004			Subtotal of T _t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}] \dots$	hr	0.10			<u>0.10</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr St	torm Events				
		Segment ID				
13.	Surface Description (paved or unpaved)	°				
14.	Flow Length, L					
15.	Watercourse Slope, s					
16.	Average Velocity, V (TR-55, Figure 3-1)					Subtotal of T _t
17.	Compute $T_t = L / (3600V)$	hr				<u>0.00</u>
Pipe	e Flow for 10-yr & 100-yr Storm Events					
		Segment ID	0.4.0	N to F		
10		Segment ID	B to D	D to E	E to "Basin G"	
18. 19.	Average Velocity, V Flow Length, L		2.00	2.00	2.00	Subtotal of T _t
19. 20.	Compute $T_t = L / (3600V)$		1,900 0.26	2,000 0.28	1,650 0.23	<u>0.77</u>
			0.20	0.20	0.25	0.77
Con	npute T _c for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea T_{c10} (add T_t in steps 6, 17, &	25) hr	0.12	0.00	0.77	<u>0.89</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea T_{c100} (add T_t in steps 12, 17,	& 25) hr	0.10	0.00	0.77	<u>0.87</u>
			Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)	hr				<u>0.53</u>
					L	

	Table 3
Time of Concentration	& Tlag Calculation Worksheet

Drai	nage Zone & General Location:		Corresponding Exh	ibits/Descriptions:	Date:	
	Zone H, Northeast Portion of Study Area		Exhibit A		Februe	ary 13, 2006
She	et Flow for 10-yr 24-hr Storm Event (Applic	able to T _c onl	y)			
		Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Ta	able 3-1)	0.011			
3.	Flow Length, L (total L ≤ 300 feet)	ft	300			
	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
i.	Land Slope, s	ft/ft	0.008			Subtotal of T_t
i.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}] \dots$	hr	0.09			<u>0.09</u>
She	et Flow for 100-yr 24-hr Storm Event (Appli	cable to T _c or	ıly)			
		Segment ID	A to B			
	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
	Manning's Roughness Coefficient, n (TR-55, Ta		0.011			
	Flow Length, L (total $L \leq 300$ feet)	ft	300			
0.	100-yr, 24-hr Rainfall, P ₁₀₀	in	2.86			
1.	Land Slope, s	ft/ft	0.008			Subtotal of T _t
2.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}] \dots$	hr	0.08			<u>0.08</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr \$	Storm Events				
		Segment ID				
3.	Surface Description (paved or unpaved)					
4.	Flow Length, L	ft				
5.	Watercourse Slope, s	ft/ft				
6.	Average Velocity, V (TR-55, Figure 3-1)	ft/s				Subtotal of T_t
7.	Compute $T_t = L / (3600V)$	hr				<u>0.00</u>
ipe	e Flow for 10-yr & 100-yr Storm Events					
		Segment ID	B to E	E to H	H to "Basin H"	
8.	Average Velocity, V	ft/s	2.00	2.00	2.00	
9.	Flow Length, L	ft	3,350	2,700	4,550	Subtotal of T _t
0.	Compute $T_t = L / (3600V)$	hr	0.47	0.38	0.63	<u>1.47</u>
on	npute T _c for 10-yr & 100-yr Storm Events					
1.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17,	& 25) hr	0.09	0.00	1.47	<u>1.56</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
2.	Watershed or Subarea $T_{c\ 100}$ (add T_t in steps 12, 1	7, & 25) hr	0.08	0.00	1.47	<u>1.55</u>
			Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
3.	TLAG (=0.6*Tc)	hr			I	<u>0.94</u>
					L	

	Table 3	
Time of Concentration	& Tlag Calculatior	Worksheet

Drai	nage Zone & General Location:		Corresponding Ex	chibits/Descriptior	Date:	
	Zone I, Central Portion of Study Area		Exhibit A		Octob	per 7, 2004
She	et Flow for 10-yr 24-hr Storm Event (Applicable to T	r _c on	ly)			
	Segme	ent ID	A to B			
1.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)		0.011			
3.	Flow Length, L (total L ≤ 300 feet)	. ft	300			
4.	10-yr, 24-hr Rainfall, P ₁₀	. in	2.06			
5.	Land Slope, s	. ft/ft	0.008			Subtotal of T _t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$.hr	0.09			<u>0.09</u>
She	et Flow for 100-yr 24-hr Storm Event (Applicable to	T _c o	nly)			
	Segme	ent ID	A to B			
7.	Surface Description (TR-55, Table 3-1)		Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n (TR-55, Table 3-1)		0.011			
9.	Flow Length, L (total L ≤ 300 feet)		300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀		2.86			
11.	Land Slope, s		0.008			Subtotal of T _t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$		0.08			<u>0.08</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr Storm Ev	/ents				
	Segme					
13.	Surface Description (paved or unpaved)					
14.	Flow Length, L					
15.	Watercourse Slope, s					
16.	Average Velocity, V (TR-55, Figure 3-1)					Subtotal of T _t
17.	Compute T _t = L / (3600V)					<u>0.00</u>
Pine	e Flow for 10-yr & 100-yr Storm Events					
ripc						
	Segme		B to C	C to "Basin I"	E to "Basin I"	
18.	Average Velocity, V		2.00	2.00	2.00	
19.	Flow Length, L		3,500	600		Subtotal of T _t
20.	Compute $T_t = L / (3600V)$. hr	0.49	0.08	0.00	<u>0.57</u>
Con	npute T $_{c}$ for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25)	. hr	0.09	0.00	0.57	<u>0.66</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25)	. hr	0.08	0.00	0.57	<u>0.65</u>
			Step 12 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)	. hr				<u>0.40</u>

Table 3	
Time of Concentration & Tlag Calculation Worksheet	

Drai	inage Zone & General Location:		Corresponding Exh	nibits/Descriptions:	Date:	
	Zone K, Northeast Quadrant of Study Area		Exhibit A		June 5	5, 2007
She	et Flow for 10-yr 24-hr Storm Event (Applical	ble to T _c only)				
		Segment ID	A to B			
1.	Surface Description (TR-55, Table 3-1)	•	Concrete/Asphalt			
2.	Manning's Roughness Coefficient, n(TR-55, Table		0.011			
3.	Flow Length, L (total $L \leq 300$ feet)		300			
4.	10-yr, 24-hr Rainfall, P ₁₀		2.06			
5.	Land Slope, s	ft/ft	0.003			Subtotal of T _t
6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.13			<u>0.13</u>
She	et Flow for 100-yr 24-hr Storm Event (Applica	able to T _c only	<i>y</i>)			
		Segment ID	A to B			
7.	Surface Description (TR-55, Table 3-1)	•	Concrete/Asphalt			
8.	Manning's Roughness Coefficient, n(TR-55, Table		0.011			
9.	Flow Length, L (total $L \leq 300$ feet)		300			
10.	100-yr, 24-hr Rainfall, P ₁₀₀		2.86			
11.	Land Slope, s	ft/ft	0.003			Subtotal of T _t
12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$	hr	0.11			<u>0.11</u>
Sha	llow Concentrated Flow for 10-yr & 100-yr St	orm Evonts				
Ona				I		
		Segment ID				
13.	Surface Description (paved or unpaved)					
14.	Flow Length, L					
15.	Watercourse Slope, s					0.000
16.	Average Velocity, V (TR-55, Figure 3-1)					Subtotal of T _t
17.	Compute $T_t = L / (3600V)$	hr				<u>0.00</u>
Pipe	e Flow for 10-yr & 100-yr Storm Events					
		Segment ID	B to C	C to D	D to "Basin K"	
18.	Average Velocity, V	ft/s	2.00	2.00	2.00	
19.	Flow Length, L	ft	2,600	4,900	1,800	Subtotal of T_t
20.	Compute $T_t = L / (3600V)$	hr	0.36	0.68	0.25	<u>1.29</u>
Con	npute T _c for 10-yr & 100-yr Storm Events					
21.	Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 2	25) hr	0.13	0.00	1.29	<u>1.42</u>
			Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
22.	Watershed or Subarea T_{c100} (add T_{t} in steps 12, 17,	& 25) hr	0.11	0.00	1.29	<u>1.40</u>
			Step 12 Tt Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
23.	TLAG (=0.6*Tc)	hr]	<u>0.85</u>
					-	

Table 3	
Time of Concentration & Tlag Calculation Worksheet	

Zone L, East/Central Parties of Study Area Exhibit A June 5, 2007 Sheet Flow for 10-yr 24-hr Storm Event (Applicable to T _c only) Segment ID A to B	Drai	nage Zone & General Location:		Corresponding Exh	nibits/Descriptions:	Date:	
Segment ID A to B		Zone L, East/Central Portion of Study Area		Exhibit A		June 5	5, 2007
1. Surface Description (TR-55, Table 3-1)	She	et Flow for 10-yr 24-hr Storm Event (Applica	ble to T _c only)				
1. Surface Description (TR-55, Table 3-1)			Seament ID	A to B			
2. Manning's Roughness Coefficient, ntrs.6s, Table 3-1, 0.011 10-yr, 24-hr Rainfall, R ₁₀	1.	Surface Description (TR-55, Table 3-1)	•	Concrete/Asphalt			
3. Flow Length, L (notal L≤ 300 test)				,			
5. Land Slope, s	3.			300			
6. Compute T _i = [0.007 ⁺ (nL) ^{0.8}] / [P ₁₀ ^{0.8} s ^{0.4}]	4.	10-yr, 24-hr Rainfall, P ₁₀	in	2.06			
Sheet Flow for 100-yr 24-hr Storm Event (Applicable to T _e only) Segment ID A to B Concrete/Asphalt 8. Manning's Roughness Coefficient, n(TR-55, Table 3-1) 0.011 0.011 9. Flow Length, L (total L_ 300 ten)	5.	Land Slope, s	ft/ft	0.003			Subtotal of T _t
Segment ID A to B Image: Concrete / Aspholt 8. Manning's Roughness Coefficient, n(TR-55, Table 3-1) 0.011 0.011 9. Flow Length, L (total L \leq 300 feet)	6.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{10}^{0.5}s^{0.4}]$	hr	0.13			<u>0.13</u>
7. Surface Description (TR-85, Table 3-1) 8. Manning's Roughness Coefficient, n(TR-55, Table 3-1) 9. Flow Length, L (total L 2 300 fee)	She	et Flow for 100-yr 24-hr Storm Event (Applic	able to T _c only	<i>y</i>)			
7. Surface Description (TR-85, Table 3-1) 8. Manning's Roughness Coefficient, n(TR-55, Table 3-1) 9. Flow Length, L (total L 2 300 fee)			Segment ID	A to B			
8. Manning's Roughness Coefficient, n(TR-65, Table 3-1), 9. Flow Length, L (total L \leq 300 text)	7	Surface Description (TR-55 Table 3-1)	•				
9. Flow Length, L total L \leq 300 feeb,		1 (, , ,					
10. 100-yr, 24-hr Rainfall, P ₁₀₀ in 2.86 Image: style="text-align: center;">Subtotal of T, 11. Land Slope, s				300			
12. Compute $T_i = [0.007^*(nL)^{0.8}] / [P_{100}^{-0.5} s^{0.4}]$ hr 0.11 0.11 Shallow Concentrated Flow for 10-yr & 100-yr Storm Events Segment ID 13. Surface Description (paved or unpaved) 14. Flow Length, L	10.			2.86			
Shallow Concentrated Flow for 10-yr & 100-yr Storm Events Segment ID 13. Surface Description (paved or unpaved)	11.	Land Slope, s	ft/ft	0.003			Subtotal of T _t
Segment ID Segment ID 13. Sufface Description (paved or unpaved)	12.	Compute $T_t = [0.007^*(nL)^{0.8}] / [P_{100}^{0.5}s^{0.4}]$	hr	0.11			<u>0.11</u>
Segment ID Segment ID 13. Sufface Description (paved or unpaved)	Sha	llow Concentrated Flow for 10-vr & 100-vr St	torm Events				
13. Surface Description (paved or unpaved)							
14. Flow Length, L			•				
15. Watercourse Slope, s							
16. Average Velocity, V (TR-55, Figure 3-1)							
17. Compute $T_t = L/(3600V)$ hr $\underline{0.00}$ Pipe Flow for 10-yr & 100-yr Storm Events Segment ID B to "Basin L" Image: Segment ID B to "Basin L" 18. Average Velocity, V Subtotal of T_t 19. Flow Length, L Subtotal of T_t 20. Compute $T_t = L/(3600V)$ hr 0.42 Compute $T_t = L/(3600V)$ Subtotal of T_t 2. Compute T_c for 10-yr & 100-yr Storm Events 21. Watershed or Subarea $T_{c 10}$ (add T_t in steps 6, 17, & 25) hr 0.13 0.00 0.42 22. Watershed or Subarea $T_{c 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 22. Watershed or Subarea $T_{c 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 2.00 Step 12 T, Subtotal Step 20 T, Subtotal Total $T_{c 100}$	-	•					Subtotal of T
Pipe Flow for 10-yr & 100-yr Storm Events Segment ID B to "Basin L" 18. Average Velocity, V 19. Flow Length, L	-						<u> </u>
Segment IDB to "Basin L"18. Average Velocity, V	_						0.00
18. Average Velocity, Vft/s 2.00 Subtotal of Tt19. Flow Length, Lft $3,000$ Subtotal of Tt20. Compute $T_t = L / (3600V)$ hr 0.42 0.42 Compute T_c for 10-yr & 100-yr Storm Events21. Watershed or Subarea $T_{c 10}$ (add T_t in steps 6, 17, & 25) hr 0.13 0.00 0.42 0.55 Step 6 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t SubtotalTotal $T_{c 10}$ 22. Watershed or Subarea $T_{c 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 Step 12 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t SubtotalTotal $T_{c 10}$	Pipe	Flow for 10-yr & 100-yr Storm Events					
19. Flow Length, LImage: Subtrained of Text and the second s			Segment ID	B to "Basin L"			
20. Compute $T_t = L / (3600V)$ hr 0.42 0.42 Compute T_c for 10-yr & 100-yr Storm Events21. Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr 0.13 0.00 0.42 0.55 22. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 22. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 25. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 25. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 26. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 0.11 0.00 0.42 0.53 0.53 0.53 0.53	18.	Average Velocity, V	ft/s	2.00			
Compute T_c for 10-yr & 100-yr Storm Events21. Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr0.130.000.420.55Step 6 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t SubtotalTotal $T_{c \ 10}$ 22. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr0.110.000.420.53Step 12 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t Subtotal	19.	-		3,000			Subtotal of T _t
21. Watershed or Subarea $T_{c \ 10}$ (add T_t in steps 6, 17, & 25) hr 0.13 0.00 0.42 0.55 Step 6 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t SubtotalTotal $T_{c \ 10}$ 22. Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 Step 12 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t SubtotalTotal $T_{c \ 100}$	20.	Compute $T_t = L / (3600V)$	hr	0.42			<u>0.42</u>
Step 6 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t SubtotalTotal $T_{c 10}$ 22. Watershed or Subarea $T_{c 100}$ (add T_t in steps 12, 17, & 25) hr 0.11 0.00 0.42 0.53 Step 12 T_t SubtotalStep 17 T_t SubtotalStep 20 T_t Subtotal	Con	npute T _c for 10-yr & 100-yr Storm Events					
O.11 O.00 O.42 O.53 Step 12 Tt Subtotal Step 17 Tt Subtotal Step 20 Tt Subtotal Total Tc 100	21.	Watershed or Subarea $T_{c\ 10}$ (add T_t in steps 6, 17, &	25) hr	0.13	0.00	0.42	<u>0.55</u>
Step 12 T _t Subtotal Step 17 T _t Subtotal Step 20 T _t Subtotal Total T_{c 100}				Step 6 T _t Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 10}
	22.	Watershed or Subarea $T_{c \ 100}$ (add T_t in steps 12, 17,	& 25) hr	0.11	0.00	0.42	<u>0.53</u>
23. TLAG (=0.6*Tc)hr				Step 12 Tt Subtotal	Step 17 T _t Subtotal	Step 20 T _t Subtotal	Total T _{c 100}
	23.	TLAG (=0.6*Tc)	hr			[<u>0.33</u>

Table 4						
Detention Basin Summary Listing						

Detention Basin	Peak Inflow _{100-yr} (cfs)	Peak Outflow (cfs)	Peak Storage (ac-ft)				
A1	228	2.0	89				
A2B	158	0.5	43				
A2A	178	0.5	56				
В	123	0.5	55				
С	38	1.0	12				
D	117	0.5	41				
E	See Note 1 Below						
F	69	0.5	25				
G	70	0.5	20				
н	115	0.5	44				
I	98	0.5	23				
J		1.75	12				
К	304	0.5	108				
L	70	0.5	16				
CC	See Note 2 Below						

Note 1: Drainage as approved by City for Foster Farms and contiguous property development plans.

Note 2: Detention storage to be provided in future 5acre park on south side of Peach Avenue, east of high school.

Table 5
Rational Method Discharges Generated by 100 Acres

Land Use	Initial T _c (min)	Duration (min)	Runoff Coefficient	Intensity (in/hr)	Intensity (in/hr)	Area (acres)	Discharge (cfs)	Discharge (cfs)
	Τ _{c I}	T _{c total}	С	I ₁₀	I ₁₀₀	Α	Q ₁₀	Q ₁₀₀
Low-Density Residential	20	87	0.40	0.54	0.79	100	21.6	31.6
Medium-Density Residential	20	84	0.45	0.55	0.80	100	24.8	36.0
High-Density Residential	20	83	0.50	0.56	0.81	100	28.0	40.5
Commercial	10	71	0.80	0.61	0.89	100	48.8	71.2
Mixed Used	10	77	0.50	0.57	0.85	100	28.5	42.5
Limited Industrial	10	77	0.80	0.57	0.85	100	45.6	68.0
General Industrial	10	77	0.85	0.57	0.85	100	48.5	72.3
Schools	20	87	0.30	0.54	0.79	100	16.2	23.7
Parks/Open Space	20	83	0.15	0.56	0.81	100	8.4	12.2

Table 6Uniform Flow Capacities for Various Storm Drain Pipe Sizes

Pipe Diameter	d/D Ratio	Pipe Slope	Discharge
(in)			(cfs)
18	full flow	0.003	6.2
18	full flow	0.002	5.0
18	full flow	0.001	3.6
24	full flow	0.003	14.0
24	full flow	0.002	11.0
24	full flow	0.001	8.0
30	full flow	0.003	23.0
30	full flow	0.002	18.7
30	full flow	0.001	13.4
36	full flow	0.003	37.5
36	full flow	0.002	30.5
36	full flow	0.001	21.5
42	full flow	0.003	60.0
42	full flow	0.002	49.0
42	full flow	0.001	34.0
48	full flow	0.003	84
48	full flow	0.002	67
48	full flow	0.001	49
54	full flow	0.003	117
54	full flow	0.002	95
54	full flow	0.001	67
60	full flow	0.003	155
60	full flow	0.002	125
60	full flow	0.001	89
66	full flow	0.003	195
66	full flow	0.002	160
66	full flow	0.001	115
72	full flow	0.003	245
72	full flow	0.002	200
72	full flow	0.001	145
78	full flow	0.003	310
78	full flow	0.002	250
78	full flow	0.001	180
84	full flow	0.003	370
84	full flow	0.002	305
84	full flow	0.001	215

Table 7
Drainage Infrastructure Cost Estimate Summary

DRAINAGE ZONE	ESTIMATED COST					
A	\$	31,001,254				
В	\$	9,763,689				
С	\$	2,868,415				
D**	\$	2,744,619				
E*	(se	e note below)				
F	\$	5,301,357				
G	\$	3,567,078				
н	\$	6,928,790				
I	\$	2,806,828				
J	\$	1,058,000				
К	\$	14,899,180				
L	\$	3,190,520				
CC	\$	3,108,335				
SUBTOTAL	\$	87,238,065				
Misc. @ 15%	\$	13,085,710				
TOTAL	\$	100,323,775				

An infrastructure cost estimate is not provided for Drainage Zone E, which substantially consists of property owned by Foster Farms. It is assumed that infrastructure will simply be constructed as approved by the City as incremental future development occurs within this drainage zone.

** Costs pertain to properties south of Vinewood Ave/B St, only..

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL COST
Drainage Zone A				
Construction of Major Facilities			 	
Detention Basin A1 (20' Depth, Outflow = 2 cfs)	89	AF	\$ 10,000	\$ 890,000
Detention Basin A2B (10' Depth, Outflow = 0.5 cfs)	43	AF	\$ 10,000	\$ 430,000
Detention Basin A2A(10' Depth, Outflow = 0.5 cfs)	56	AF	\$ 10,000	\$ 560,000
Add'I Excavation Allowance Above Detention Basin WSEs	185	AF	\$ 10,000	\$ 1,850,000
Pump Station (Detention Basin A1)	1	LS	\$ 250,000	\$ 250,000
Force Main (@ Detention Basin A1)	150	LF	\$ 60	\$ 9,000
Construction of Storm Drains				
18" SD	8,723	LF	\$ 80	\$ 697,840
24" SD	14,500	LF	\$ 100	\$ 1,450,000
30" SD	8,488	LF	\$ 125	\$ 1,061,000
36" SD	7,006	LF	\$ 150	\$ 1,050,900
42" SD	6,407	LF	\$ 180	\$ 1,153,260
48" SD	9,491	LF	\$ 210	\$ 1,993,110
54" SD	2,640	LF	\$ 250	\$ 660,000
60" SD	1,960	LF	\$ 300	\$ 588,000
66" SD	3,160	LF	\$ 350	\$ 1,106,000
72" SD	2,500	LF	\$ 400	\$ 1,000,000
Subtotal of Construction				\$ 14,749,110
Design & Planning @ 10% of Construction Subtotal				\$ 1,474,911
Construction Management @ 10% of Construction Subtotal				\$ 1,474,911
Contingency @ 15% of Construction Subtotal				\$ 2,212,367
Program Implementation @ 5% of Construction Subtotal				\$ 737,456
Land Acquisition				
Right-of-Way (Detention Basin A1)	12.00	AC	\$ 250,000	\$ 3,000,000
Right-of-Way (Detention Basin A2B)	10.00	AC	\$ 250,000	\$ 2,500,000
Right-of-Way (Detention Basin A2A)	11.00	AC	\$ 250,000	\$ 2,750,000
18" SD Easement	1.69	AC	\$ 250,000	\$ 422,500
24" SD Easement	4.12	AC	\$ 250,000	\$ 1,030,000
30" SD Easement	2.02	AC	\$ 250,000	\$ 505,000
36" SD Easement	0.30	AC	\$ 250,000	\$ 75,000
42" SD Easement	0.28	AC	\$ 250,000	\$ 70,000
Subtotal of Land Acquisition				\$ 10,352,500
TOTAL ESTIMATED COST				\$ 31,001,254

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST		TOTAL COST
Drainage Zone B					
Construction of Major Facilities					
Detention Basin B (20' Depth, Outflow = 0.5 cfs)	55	AF	\$	10,000	\$ 550,000
Add'I Excavation Allowance Above Detention Basin WSE	40	AF	\$	10,000	\$ 400,000
Pump Station	1	LS	\$	250,000	\$ 250,000
Force Main (@ Detention Basin B)	4,200	LF	\$	60	\$ 252,000
Construction of Storm Drains					
18" SD	1,082	LF	\$	80	\$ 86,560
24" SD	2,603	LF	\$	100	\$ 260,300
30" SD	5,261	LF	\$	125	\$ 657,625
36" SD	1,023	LF	\$	150	\$ 153,450
42" SD	4,685	LF	\$	180	\$ 843,300
48" SD	2,615	LF	\$	210	\$ 549,150
54" SD	2,651	LF	\$	250	\$ 662,750
Subtotal of Construction					\$ 4,665,135
Design & Planning @ 10% of Construction Subtotal					\$ 466,514
Construction Management @ 10% of Construction Subtotal					\$ 466,514
Contingency @ 15% of Construction Subtotal					\$ 699,770
Program Implementation @ 5% of Construction Subtotal					\$ 233,257
Land Acquisition					
Right-of-Way (Detention Basin)	7.50	AC	\$	250,000	\$ 1,875,000
Force main	1.43	AC	\$	250,000	\$ 357,500
18" SD Easement	0.11	AC	\$	250,000	\$ 27,500
24" SD Easement	0.59	AC	\$	250,000	\$ 147,500
30" SD Easement	1.21	AC	\$	250,000	\$ 302,500
36" SD Easement	0.28	AC	\$	250,000	\$ 70,000
48" SD Easement	1.20	AC	\$	250,000	\$ 300,000
54" SD Easement	0.61	AC	\$	250,000	\$ 152,500
Subtotal of Land Acquisition					\$ 3,232,500
TOTAL ESTIMATED COST					\$ 9,763,689

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST		TOTAL COST	
Drainage Zone C						
Construction of Major Facilities						
Detention Basin C (20' Depth, Outflow = 1 cfs)	12	AF	\$	10,000	\$	120,000
Add'I Excavation Allowance Above Detention Basin WSE	20	AF	\$	10,000	\$	200,000
Pump Station	1	LS	\$	250,000	\$	250,000
Construction of Storm Drains						
18" SD	2,320	LF	\$	80	\$	185,600
24" SD	2,081	LF	\$	100	\$	208,100
30" SD	809	LF	\$	125	\$	101,125
36" SD	748	LF	\$	150	\$	112,200
48" SD	1,320	LF	\$	210	\$	277,200
Subtotal of Construction					\$	1,454,225
Design & Planning @ 10% of Construction Subtotal					\$	145,423
Construction Management @ 10% of Construction Subtotal					\$	145,423
Contingency @ 15% of Construction Subtotal					\$	218,134
Program Implementation @ 5% of Construction Subtotal					\$	72,711
Land Acquisition						
Right-of-Way (Detention Basin)	3.00	AC	\$	250,000	\$	750,000
24" SD Easement	0.33	AC	\$	250,000	\$	82,500
Subtotal of Land Acquisition					\$	832,500
TOTAL ESTIMATED COST					\$	2,868,415

Table 8
Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT		UNIT COST		TOTAL COST
Drainage Zone D (Note: Infrastructure Needed to Serv	ve Properties Sou	ıth of Vinewo	od Ave	nue/B Street	Only;	
Remaining Storm Drainage Infrast	ructure Costs to	be Borne by	Gallo D	evelopment)		
Construction of Major Facilities						
Detention Basin D (41 AF Total, 20' Depth, Outflow = 0.5 cfs)	16	AF	\$	10,000	\$	160,000
Construction of Storm Drains						
18" SD	1,251	LF	\$	80	\$	100,080
24" SD	661	LF	\$	100	\$	66,100
30" SD	1,883	LF	\$	125	\$	235,375
36" SD	717	LF	\$	150	\$	107,550
42" SD	4,436	LF	\$	180	\$	798,480
Subtotal of Construction					\$	1,467,585
Design & Planning @ 10% of Construction Subtotal					\$	146,759
Construction Management @ 10% of Construction Subtotal					\$	146,759
Contingency @ 15% of Construction Subtotal					\$	220,138
Program Implementation @ 5% of Construction Subtotal					\$	73,379
Land Acquisition						
Right-of-Way (Applicable Portion of Detention Basin)	3.60	AC	\$	50,000	\$	180,000
42" SD Easement	2.04	AC	\$	250,000	\$	510,000
Subtotal of Land Acquisition					\$	690,000
TOTAL ESTIMATED COST					\$	2,744,619

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST		TOTAL COST	
Drainage Zone F						
Construction of Major Facilities						
Detention Basin F (20' Depth, Outflow = 0.5 cfs)	25	AF	\$	10,000	\$	250,000
Add'I Excavation Allowance Above Detention Basin WSE	25	AF	\$	10,000	\$	250,000
Pump Station	1	LS	\$	250,000	\$	250,000
Force Main (@ Detention Basin F)	1,559	LF	\$	60	\$	93,540
Construction of Storm Drains						
18" SD	2,836	LF	\$	80	\$	226,880
24" SD	5,339	LF	\$	100	\$	533,900
30" SD	2,975	LF	\$	125	\$	371,875
42" SD	3,342	LF	\$	180	\$	601,560
Subtotal of Construction					\$	2,577,755
Design & Planning @ 10% of Construction Subtotal					\$	257,776
Construction Management @ 10% of Construction Subtotal					\$	257,776
Contingency @ 15% of Construction Subtotal					\$	386,663
Program Implementation @ 5% of Construction Subtotal					\$	128,888
Land Acquisition						
Right-of-Way (Detention Basin)	5.00	AC	\$	250,000	\$	1,250,000
24" SD Easement	0.44	AC	\$	250,000	\$	110,000
30" SD Easement	0.15	AC	\$	250,000	\$	37,500
42" SD Easement	1.18	AC	\$	250,000	\$	295,000
Subtotal of Land Acquisition					\$	1,692,500
TOTAL ESTIMATED COST					\$	5,301,357

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST		TOTAL COST
Drainage Zone G					
Construction of Major Facilities					
Detention Basin G (20' Depth, Outflow = 0.5 cfs)	20	AF	\$ 10,000	\$	200,000
Add'I Excavation Allowance Above Detention Basin WSE	20	AF	\$ 10,000	\$	200,000
Pump Station	1	LS	\$ 250,000	\$	250,000
Force Main (@ Detention Basin G)	320	LF	\$ 60	\$	19,200
Construction of Storm Drains					
18" SD	442	LF	\$ 80	\$	35,360
24" SD	1,239	LF	\$ 100	\$	123,900
30" SD	2,128	LF	\$ 125	\$	266,000
36" SD	653	LF	\$ 150	\$	97,950
42" SD	1,188	LF	\$ 180	\$	213,840
48" SD	462	LF	\$ 210	\$	97,020
Subtotal of Construction				\$	1,503,270
Design & Planning @ 10% of Construction Subtotal				\$	150,327
Construction Management @ 10% of Construction Subtotal				\$	150,327
Contingency @ 15% of Construction Subtotal				\$	225,491
Program Implementation @ 5% of Construction Subtotal				\$	75,164
Land Acquisition					
Right-of-Way	3.50	AC	\$ 250,000	\$	875,000
24" SD Easement	0.31	AC	\$ 250,000	\$	77,500
30" SD Easement	0.98	AC	\$ 250,000	\$	245,000
36" SD Easement	0.30	AC	\$ 250,000	\$	75,000
42" SD Easement	0.55	AC	\$ 250,000	\$	137,500
48" SD Easement	0.21	AC	\$ 250,000	\$	52,500
Subtotal of Land Acquisition				\$	1,462,500
TOTAL ESTIMATED COST				\$	3,567,078

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL COST
Drainage Zone H				
Construction of Major Facilities			 	
Detention Basin H (20' Depth, Outflow = 0.5 cfs)	44	AF	\$ 10,000	\$ 440,000
Add'l Excavation Allowance Above Detention Basin WSE	35	AF	\$ 10,000	\$ 350,000
Pump Station	1	LS	\$ 250,000	\$ 250,000
Force Main (@ Detention Basin H)	1,512	LF	\$ 60	\$ 90,720
Construction of Storm Drains				
18" SD	1,771	LF	\$ 80	\$ 141,680
30" SD	2,970	LF	\$ 125	\$ 371,250
36" SD	1,320	LF	\$ 150	\$ 198,000
42" SD	450	LF	\$ 180	\$ 81,000
48" SD	1,970	LF	\$ 210	\$ 413,700
54" SD	1,450	LF	\$ 250	\$ 362,500
60" SD	1,120	LF	\$ 300	\$ 336,000
Subtotal of Construction				\$ 3,034,850
Design & Planning @ 10% of Construction Subtotal				\$ 303,485
Construction Management @ 10% of Construction Subtotal				\$ 303,485
Contingency @ 15% of Construction Subtotal				\$ 455,228
Program Implementation @ 5% of Construction Subtotal				\$ 151,743
Land Acquisition				
Right-of-Way (Detention Basin)	7.00	AC	\$ 250,000	\$ 1,750,000
18" SD Easement	0.21	AC	\$ 250,000	\$ 52,500
30" SD Easement	0.61	AC	\$ 250,000	\$ 152,500
36" SD Easement	0.61	AC	\$ 250,000	\$ 152,500
42" SD Easement	0.21	AC	\$ 250,000	\$ 52,500
48" SD Easement	0.90	AC	\$ 250,000	\$ 225,000
54" SD Easement	0.67	AC	\$ 250,000	\$ 167,500
60" SD Easement	0.51	AC	\$ 250,000	\$ 127,500
Subtotal of Land Acquisition			 	\$ 2,680,000
TOTAL ESTIMATED COST				\$ 6,928,790

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST		TOTAL COST	
Drainage Zone I						
Construction of Major Facilities						
Detention Basin I (20' Depth, Outflow = 0.5 cfs)	23	AF	\$	10,000	\$ 230,000	
Add'l Excavation Allowance Above Detention Basin WSE	17	AF	\$	10,000	\$ 170,000	
Pump Station	1	LS	\$	250,000	\$ 250,000	
Force Main (@ Detention Basin I)	480	LF	\$	60	\$ 28,800	
Construction of Storm Drains						
18" SD	1,317	LF	\$	80	\$ 105,360	
24" SD	954	LF	\$	100	\$ 95,400	
30" SD	2,196	LF	\$	125	\$ 274,500	
36" SD	400	LF	\$	150	\$ 60,000	
42" SD	197	LF	\$	180	\$ 35,460	
Subtotal of Construction					\$ 1,249,520	
Design & Planning @ 10% of Construction Subtotal					\$ 124,952	
Construction Management @ 10% of Construction Subtotal					\$ 124,952	
Contingency @ 15% of Construction Subtotal					\$ 187,428	
Program Implementation @ 5% of Construction Subtotal					\$ 62,476	
Land Acquisition						
Right-of-Way (Detention Basin)	4.00	AC	\$	250,000	\$ 1,000,000	
24" SD Easement	0.23	AC	\$	250,000	\$ 57,500	
Subtotal of Land Acquisition					\$ 1,057,500	
TOTAL ESTIMATED COST					\$ 2,806,828	

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST		TOTAL COST	
Drainage Zone J						
Construction of Major Facilities						
Detention Basin J (10' Depth, Outflow = 1.75 cfs)	12	AF	\$ 10,000	\$	120,000	
Add'l Excavation Allowance Above Detention Basin WSE	10	AF	\$ 10,000	\$	100,000	
Subtotal of Construction				\$	220,000	
Design & Planning @ 10% of Construction Subtotal				\$	22,000	
Construction Management @ 10% of Construction Subtotal				\$	22,000	
Contingency @ 15% of Construction Subtotal				\$	33,000	
Program Implementation @ 5% of Construction Subtotal				\$	11,000	
Land Acquisition						
Right-of-Way (Storm Drainage Component of Detention Basin)	3.00	AC	\$ 250,000	\$	750,000	
Subtotal of Land Acquisition				\$	750,000	
TOTAL ESTIMATED COST				\$	1,058,000	

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL COST
Drainage Zone K				
Construction of Major Facilities				
Detention Basin K (15' Depth, Outflow = 0.5 cfs)	108	AF	\$ 10,000	\$ 1,080,000
Add'I Excavation Allowance Above Detention Basin WSE	75	AF	\$ 10,000	\$ 750,000
Pump Station	1	LS	\$ 250,000	\$ 250,000
Force Main (@ Detention Basin K)	2,700	LF	\$ 60	\$ 162,000
Construction of Storm Drains				
18" SD	5,640	LF	\$ 80	\$ 451,200
24" SD	7,150	LF	\$ 100	\$ 715,000
30" SD	5,940	LF	\$ 125	\$ 742,500
36" SD	2,880	LF	\$ 150	\$ 432,000
42" SD	4,710	LF	\$ 180	\$ 847,800
48" SD	1,720	LF	\$ 210	\$ 361,200
54" SD	1,320	LF	\$ 250	\$ 330,000
66" SD	1,320	LF	\$ 350	\$ 462,000
72" SD	700	LF	\$ 400	\$ 280,000
Subtotal of Construction				\$ 6,863,700
Design & Planning @ 10% of Construction Subtotal				\$ 686,370
Construction Management @ 10% of Construction Subtotal				\$ 686,370
Contingency @ 15% of Construction Subtotal				\$ 1,029,555
Program Implementation @ 5% of Construction Subtotal				\$ 343,185
Land Acquisition				
Right-of-Way (Detention Basin K)	15.00	AC	\$ 250,000	\$ 3,750,000
18" SD Easement	1.64	AC	\$ 250,000	\$ 410,000
24" SD Easement	1.77	AC	\$ 250,000	\$ 442,500
30" SD Easement	1.82	AC	\$ 250,000	\$ 455,000
66" SD Easement	0.61	AC	\$ 250,000	\$ 152,500
72" SD Easement	0.32	AC	\$ 250,000	\$ 80,000
Subtotal of Land Acquisition				\$ 5,290,000

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT	UNIT COST	TOTAL COST	
Drainage Zone L					
Construction of Major Facilities					
Detention Basin L (15' Depth, Outflow = 0.5 cfs)	16	AF	\$ 10,000	\$ 160,000	
Add'l Excavation Allowance Above Detention Basin WSE	16	AF	\$ 10,000	\$ 160,000	
Pump Station	1	LS	\$ 250,000	\$ 250,000	
Force Main (@ Detention Basin L)	150	LF	\$ 60	\$ 9,000	
Construction of Storm Drains					
18" SD	1,160	LF	\$ 80	\$ 92,800	
24" SD	1,850	LF	\$ 100	\$ 185,000	
30" SD	1,200	LF	\$ 125	\$ 150,000	
36" SD	1,850	LF	\$ 150	\$ 277,500	
Subtotal of Construction				\$ 1,284,300	
Design & Planning @ 10% of Construction Subtotal				\$ 128,430	
Construction Management @ 10% of Construction Subtotal				\$ 128,430	
Contingency @ 15% of Construction Subtotal				\$ 192,645	
Program Implementation @ 5% of Construction Subtotal				\$ 64,215	
Land Acquisition					
Right-of-Way (Detention Basin L)	3.50	AC	\$ 250,000	\$ 875,000	
18" SD Easement	0.53	AC	\$ 250,000	\$ 132,500	
24" SD Easement	0.69	AC	\$ 250,000	\$ 172,500	
36" SD Easement	0.85	AC	\$ 250,000	\$ 212,500	
Subtotal of Land Acquisition			 	\$ 1,392,500	
TOTAL ESTIMATED COST				\$ 3,190,520	

 Table 8

 Drainage Infrastructure Cost Estimate by Drainage Zone

DESCRIPTION	QTY	UNIT		UNIT COST		TOTAL COST
Drainage Zone CC						
Construction of Major Facilities						
Expand Arekelian Park Detention Basin	10	AF	\$	10,000	\$	100,000
Add'l Excavation Allowance Above Detention Basin WSE	10	AF	\$	10,000	\$	100,000
Excavation in New Park(South Side of Peach Ave. @ 7th St.)	5	AF	\$	10,000	\$	50,000
Pump Station (New - Arekelian Park)	1	LS	\$ 250,000		\$	250,000
Pump Station (Det. Basin, NE Corner B Street/Robin Avenue)	1	LS	\$	250,000	\$	250,000
Force Main (Det. Basin, NE Corner B Street/Robin Avenue)	800	LF	\$	60	\$	48,000
Pump Station/Force Main(South Side of Peach Avenue @ 7th St.)	1	LS	\$	300,000	\$	300,000
Construction of Storm Drains						
18" SD	3,130	LF	\$	80	\$	250,400
24" SD	2,580	LF	\$	100	\$	258,000
30" SD	625	LF	\$	125	\$	78,125
Subtotal of Construction					\$	1,684,525
Design & Planning @ 10% of Construction Subtotal					\$	168,453
Construction Management @ 10% of Construction Subtotal					\$	168,453
Contingency @ 15% of Construction Subtotal					\$	252,679
Program Implementation @ 5% of Construction Subtotal					\$	84,226
Land Acquisition						
Right-of-Way (Arekelian Park)	3.00	AC	\$	250,000	\$	750,000
Subtotal of Land Acquisition					\$	750,000
TOTAL ESTIMATED COST					\$	3,108,335

Table 9A

City of Livingston

Storm Drainage Impact Fees

Summary Of Drainage Intrastructure Costs Utilized For Fee Calculations

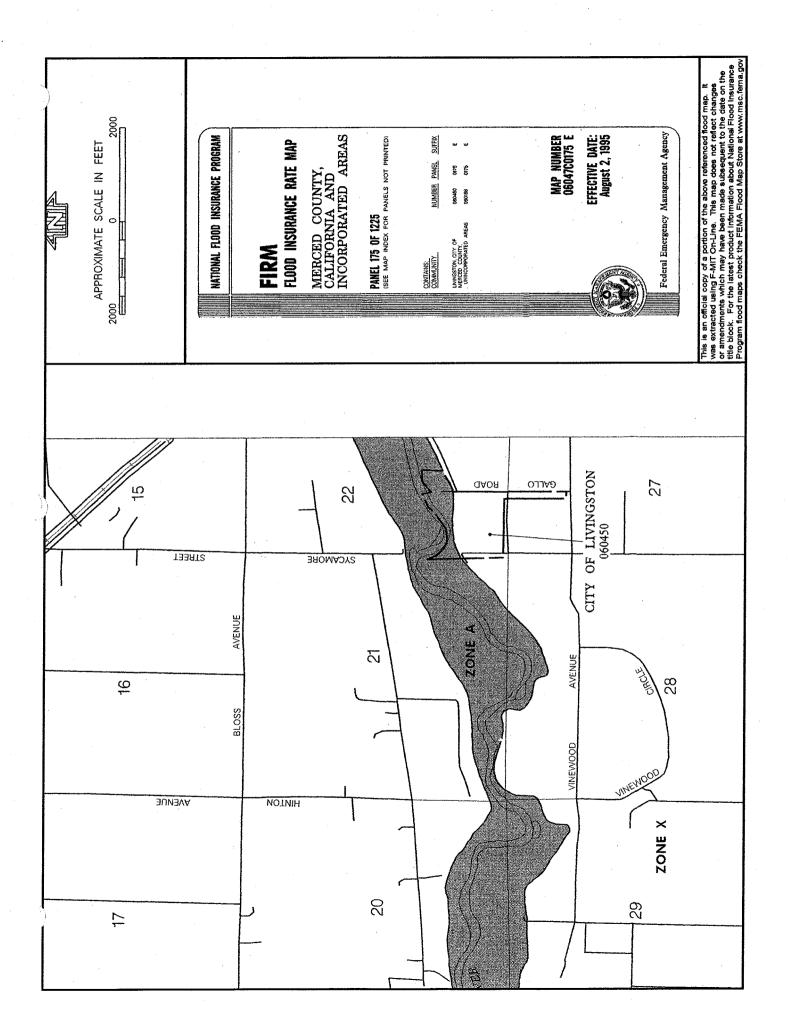
DRAINAGE ZONE*	E	ESTIMATED COST
A	\$	31,001,254
В	\$	9,763,689
С	\$	2,868,415
D**	\$	2,744,619
F	\$	5,301,357
G	\$	3,567,078
Н	\$	6,928,790
I	\$	2,806,828
К	\$	14,899,180
L	\$	3,190,520
SUBTOTAL	\$	83,071,730
Misc. @ 15%	\$	12,460,760
TOTAL	\$	95,532,490

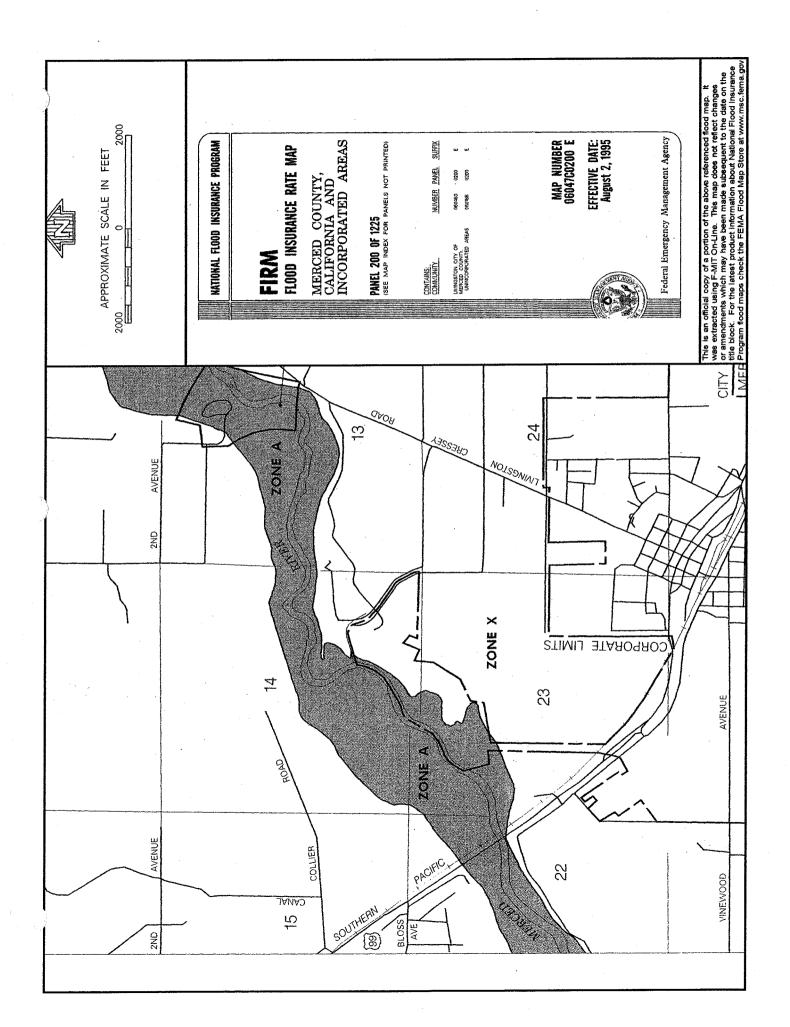
* The composite of Drainage Zones A, B, C, D, F, G, H, I, K, and L were considered to be representative for a single zone drainage impact fee calculation pertaining to the entire Storm Drainage Master Plan study area. Drainage Zones E, J, and CC were considered less representative and were not utilized in the calculation.

** Costs pertain to properties south of Vinewood Ave/B St, only.

Table 9BCity of LivingstonStorm Drainage Impact Fees

Representative Area Less Public Facilities, Parks/Open Space and Conservation Reserve (Acres)*	Cos	Total frastructure st (Including isc. @ 15%)	Land Use Category	Acreage by Land Use Category	Proportional Land Use Area	Percent Impervious	Proportional Funding Factor (Land Use % times % Impervious)	Proportional Funding Responsibility (Funding Factor % of Total)	Total Fee esponsibility	Impact Fee (Per Acre)	U	pact Fee (Per Owelling Unit)
	\$	95,532,490	Low-Density Residential	2274.8	39.25%	40%	0.1570	28.9%	\$ 27,609,566	\$ 12,13 ⁻	7 4.5	\$ 2,697
	\$	95,532,490	Medium-Density Residential	244.2	4.21%	55%	0.0232	4.3%	\$ 4,075,348	\$ 16,68	9 9	\$ 1,854
5 706 2	\$	95,532,490	High-Density Residential	81.1	1.40%	65%	0.0091	1.7%	\$ 1,599,523	\$ 19,72	3 20	\$ 986
5,796.3	\$	95,532,490	All Commercial Designations	877.0	15.13%	85%	0.1286	23.7%	\$ 22,619,077	\$ 25,79	1	N/A
	\$	95,532,490	Limited Industrial	101.6	1.75%	85%	0.0149	2.7%	\$ 2,620,409	\$ 25,79	1	N/A
	\$	95,532,490	Urban Reserve	2217.6	38.26%	55%	0.2104	38.7%	\$ 37,008,567	\$ 16,68	9	N/A
				5796.3	100.00%		0.5432	100.0%	\$ 95,532,490			


* Representative area for impact fee calculations pertaining to the entire Storm Drainage Master Plan study area includes Drainage Zones A,B,C,D,F,G,H,I, K AND L.


Appendix

FEMA FIRM Panels 175 and 200

Sample MID Drainage Agreement

Received from MID 5-19-04

SUBDIVISION DRAINAGE AGREEMENT

This Agreement is entered into between MERCED IRRIGATION DISTRICT for MERCED IRRIGATION DISTRICT DRAINAGE IMPROVEMENT DISTRICT NO. I (collectively referred to as "District"), and ______, whose address is ______, Calif. _____, (hereafter referred to as "Owner") for "Subdivision Name Here".

RECITALS

WHEREAS, pursuant to California Water Code 22981, the District has formed a California Drainage District known as Merced Irrigation District Drainage Improvement District No. I; and

WHEREAS, the District has certain canals, laterals, pumps, wells, gates, valves, rights-ofway, easements, fee property and other tangible and intangible interests and facilities for the distribution of water (herein collectively "facilities" of District); and

WHEREAS, Owner is vested in fee certain real property (hereafter the "Property") legally described in Exhibit "A" attached hereto and incorporated herein by this reference; and

WHEREAS, the property is located within Merced Irrigation District Drainage Improvement District No. 1; and

WHEREAS, Owner desires to develop said property for residential and/or commercial purposes and desires to use certain facilities of the District for drainage of storm waters from said property; and

WHEREAS, certain facilities of the District are physically capable of modification to accommodate Owner's desire to develop; and

WHEREAS, development by Owner using District facilities to provide storm drainage, adds, expands, modifies, creates and enlarges facilities; or adds, expands, modifies, creates or enlarges burdens, obligations and/or responsibilities of the District.

THEREFORE, IT IS AGREED AS FOLLOWS:

AGREEMENT

1. <u>Real Property Being Developed</u>. Owner plans to develop for residential or commercial purposes the real property as set forth on Exhibit "A" attached hereto and incorporated herein, hereinafter "Property." Said property as set forth on Exhibit "A" also represents the drainage area to be covered by this agreement.

2. <u>Modification of District Facilities.</u> Owner's subdivision will drain to located _______ of this development, Modifications to MID facilities are to be completed in the manner described in the improvement plans for " shown on Exhibit "B".

3. <u>Drainage Request</u>. Owner specifically requests and asks the District to provide said property storm drainage using facilities of the District.

4. <u>Consent of District</u>. The District consents and agrees to receive the drainage of said property to the facilities as hereinafter set forth, subject to all terms and conditions of this Agreement.

5. <u>Work of Owner</u>. Owner agrees to install, at Owner's sole cost and expense, the drainage improvements to said property.

6. <u>Agreement Fee.</u> Owner agrees to pay to the District a non-refundable sum of TWO HUNDRED AND 00/100 DOLLARS (\$200.00) for the engineering and administrative costs associated with the preparation and filing of this agreement.

7. <u>Capital Fees</u>. Owner agrees to pay or cause to be paid to the District as and for consideration of such drainage acceptance and capacity reservation the following one time only fees under this section:

a. The prevailing connection fee set by the Board of Directors through public hearing being TWO HUNDRED FIVE AND 00/100 DOLLARS (\$205.00) per lot of the Subdivision.

b. The connection fees per lot as set forth in subparagraph "a" above shall be paid by Owner upon the close of escrow of each lot concluding the first transfer of such lot by Owner following execution of the Agreement. Owner grants District a lien upon the property in the amount of TWO HUNDRED FIVE AND 00/100 DOLLARS (\$205.00) per lot which may be satisfied as to each individual lot upon the payment of the fee for such lot as set forth above. An "Agreement Creating Lien Upon Real Property" shown as Exhibit "D" will be recorded to perfect this lien. Complete Comp

8. Annual Maintenance Fees.

a. Owner acknowledges that the property is contained within the Merced Irrigation District Drainage Improvement District No. 1, which is a validly, established Drainage Improvement District of the Merced Irrigation District. Owner is aware that execution of this Agreement, construction and/or modification of District facilities and connection of Owner's property to such drainage facilities, singly or jointly constitute consent by Owner to the annual drainage fee levied by the District which at the execution of this Agreement is TWELVE AND 30/100 DOLLARS (\$12.30) per residential lot, and ONE HUNDRED TWENTY-SIX AND 76/100 DOLLARS (\$126.76) per acre of impermeable surface for commercial/commercial office/or industrial developments. Such fees are subject to annual review by the Directors of the District.

b. By execution of this Agreement, Owner consents and agrees that, as a condition precedent to District's performance, a memorandum of this Agreement will be executed by the parties and recorded by District concurrent with execution of this Agreement, substantially as set forth in Exhibit "C" attached hereto and incorporated herein by this reference.

c. Owner consents to the collection of the annual assessment on Owner's annual Merced County property tax bill. Said amount shall constitute a lien on the property until paid.

9. <u>Limitations on Discharge</u>. In consideration of the consent of District to permit the discharge of waters from the property into the facilities of the District based on the property's contribution to the local drainage area and in the manner and amount as specified and at the location referred to herein, Owner agrees that at no time shall the rate of discharge into facilities of the District exceed G.P.M.

10. <u>Changes</u>. No modification, change, or alteration of the facilities of the District or to the planned drainage method, facilities, plans or the rate and manner of drainage set forth herein, will be made by Owner without the specific written approval and consent of District first had and received.

11. <u>Failure to Make Payments - Lien on Property</u>. Failure of Owner to make any payments, under paragraphs 7 and/or 8, when due to the District as specified in this Agreement

shall become a lien upon the real property subject hereto. Should said property be subdivided into other lawful parcels at the time of non-payment, said lien will attach to the non-paying parcel.

12. <u>Drainage Defined</u>. Drainage as used herein includes only domestic drainage and storm water runoff, and excludes any and all other types of drainage, including industrial drainage, and hazardous waste. Swimming pool water may not be drained into facilities of the District without the specific consent of the District first had and obtained. Such consent shall be conditioned, as a minimum, upon a satisfactory water report of the quality of said water prior to discharge.

13. <u>Injunctions/Remedies</u>. In the event Owner is in breach of any aspect of this Agreement, the District may cause all discharge into the facilities of the District to terminate, and may seek and obtain through appropriate court action an injunction precluding all further use of facilities of the District for the purpose herein set forth. This remedy is in addition to any and all other remedies the District may have in law or equity and in addition to any damages to which the District from the property subject hereto. In the event the District establishes a wrongful discharge of water or breach of this Agreement, District shall be entitled to damages in an amount according to proof.

14. <u>Liability for Hazardous Discharge</u>. No discharge of waters into the facilities of the District shall occur, which discharges are not environmentally safe and harmless to flora and fauna as determined by the District. All discharges of water effluent or materials of any nature into facilities of the District by Owner shall be of a purity certified and approved as safe for such discharge, as water purity standards are established by the Environmental Protection Agency of the United States of America, the State of California, the County of Merced, and the District. All discharges shall be free and clear of noxious odor and particulate matter other than as satisfies the applicable quality standards. In addition to having purity sufficient for discharge, such discharges shall be safe and nondeleterious to any agrarian or husbandry use.

15. <u>Pumping Charges and Costs</u>. In connection with any reservoir impounding of drainage water for the purposes of regulation prior to discharge into facilities of the District, Owner shall be entirely responsible for any and all costs of installing said pump, its maintenance, power charges, and repair.

16. <u>Hold Harmless</u>. Owner agrees to indemnify and to hold the District free, clear and harmless from and against any and all and every form of liability, claim, suit or action of every kind, name or description whatsoever asserted or brought against the Merced Irrigation District or the Drainage District for or on account of any injuries to real or personal property or injuries or death sustained to any person or persons caused or arising out of this Agreement, the drainage activities, discharge, impounding or flooding as a result of this drainage agreement.

17. <u>Maintenance Requirement of Ditches, Fences</u>. Owner shall be responsible for the specific maintenance and repair of the property, any impound facilities, discharge facilities, and fences or other safety measures connected therewith.

18. <u>Title to Improvements</u>. All improvements placed in fee title, easements, rights-ofway, or other title properties of District by Owner pursuant to this Agreement and for the use and benefit of District shall, upon acceptance thereof by the District, become the property of District, and Owner shall have no claim thereon.

19. <u>Corporate Resolution</u>. In the event Owner is a business entity other than a sole proprietorship, the appropriate corporation resolution or authorization to enter into this Agreement and bind the real property subject hereto as herein set forth shall be first delivered to the District in form satisfactory to District. Owner specifically understands that this Agreement shall not be binding upon the District without said authorization first having been delivered to and approved by the District.

20. <u>Development</u>. Development as used herein means the conversion of real property subject hereto to uses for residential purposes, including apartments, single family residential, duplexes, fourplexes, multi-unit apartments, condominiums, greenbelts, and recreation areas. It further means offices, shopping areas, shopping malls, mini-malls, storage and retainer basins, public facilities, and all uses similar or related thereto. The former means "Residential" and the latter means "Commercial/Commercial Office".

21. <u>Severability</u>. It is intended that each paragraph of this Agreement shall be viewed as separate and divisible, and in the event that any paragraph shall be held to be invalid, the remaining paragraphs shall continue to be in full force and effect.

22. <u>Attorney's Fees</u>. Should any litigation be commenced between the parties to this Agreement concerning this Agreement or the rights and duties of either in relation thereto, the party prevailing in such litigation shall be entitled, in addition to such other relief as may be granted in the litigation, to a reasonable sum as and for his attorney's fees in such litigation or in a separate action brought for that purpose.

23. <u>Successors and Assigns</u>. This Agreement shall be binding on and shall inure to the benefit of the heirs, executors, administrators, successors and assigns of the parties hereto, and shall run with the land.

24. <u>Notices</u>. Except as otherwise expressly provided by law, any and all notices or other communications required or permitted by this Agreement or by law to be served on or given to any party hereto by any other party hereto shall be in writing and shall be deemed duly served and given when personally delivered to the party to whom they are directed, or in lieu of such personal service, when deposited in the United States mail, first class postage prepaid, addressed as follows:

MERCED IRRIGATION DISTRICT DRAINAGE IMPROVEMENT DISTRICT NO. I P. O. Box 2288 Merced, Ca. 95344

DEVELOPER'S NAME HERE Address _____, Ca.

Either party hereto may change their address for the purpose of this paragraph by giving written notice of such change to the other parties in the manner provided in this paragraph.

25. <u>Governing Law</u>. This Agreement, and all matters relating to the Agreement shall be governed by the laws of the State of California in force at the time any need for interpretation of this Agreement or any decisions or holding concerning this Agreement arises.

26. <u>Amendments</u>. This Agreement may be amended only by a writing signed by all of the parties to this Agreement.

27. <u>Titles</u>. The titles of paragraphs of this Agreement are solely for the convenience of the parties, and are not part of the Agreement.

EXECUTED at Merced, California this _____ day of _____, 2004.

MERCED IRRIGATION DISTRICT OWNER: DRAINAGE IMPROVEMENT DISTRICT NO. I DEVELOPER

By:

By:

Ross Rogers General Manager

STATE OF CALIFORNIA } COUNTY OF _____ }ss

On this ______ day of ______, 2004, before me, the undersigned, a Notary Public in and for said State, personally appeared _______, personally known to me (or proved on the basis of satisfactory evidence) to be the persons whose names are subscribed to the within SUBDIVISION DRAINAGE AGREEMENT and acknowledged to me that they executed the same in their authorized capacities, and that by their signatures on the instrument the persons, or the entity upon behalf of which the persons acted, executed the instrument.

WITNESS my hand and official seal.

Notary Public in and for said State

EXHIBIT "A"

LEGAL DESCRIPTION

THE REAL PROPERTY REFERRED TO IN THIS AGREEMENT IS SITUATE IN THE STATE OF CALIFORNIA, COUNTY OF MERCED, AND IS DESCRIBED AS FOLLOWS:

ß

EXHIBIT "B"

Currently the affected reach of the District's _____ Lateral is located _____ of the project site. This is an existing facility already used to convey storm drainage water from the City of _____, and as shown the improvement plans for:

"

Prepared By:

66

(Engineer's Name Here) Address , CA

EXHIBIT "C"

THIS SPACE FOR RECORDERS USE

RECORDING REQUESTED BY AND WHEN RECORDED RETURN TO:

Engineering Department Merced Irrigation District 744 West 20th Street(95340) P.O. Box 2288 Merced, California 95344-0288

MEMORANDUM OF DRAINAGE AGREEMENT

______, whose address is ______, calif. _____, for "____" (hereafter "Owner"), and the Merced Irrigation District Drainage Improvement District No. I, (hereafter "District"), have entered into a Subdivision Drainage Agreement. This memorandum is a summary of such agreement and is recorded to provide notice of the pertinent terms of the Agreement. Any interested party may review the full agreement at the Offices of Merced Irrigation District Drainage Improvement District No. I.

The essential terms of the Agreement are:

1. Real Property: The terms of the Agreement affect real property located in Merced County, California, and legally described as set forth in Exhibit "A" attached hereto and incorporated herein by this reference.

2. Drainage: Pursuant to the terms of the Agreement, the subject property will be provided storm drainage services as set forth thereon.

3. Fees: The property and each subdivided parcel thereof shall be assessed an annual drainage fee established by the District as modified from time to time. Said fee shall be collected on the real property tax rolls of Merced County, and shall constitute a lien on the property in favor of the District annually until paid. Additionally, a one-time connection fee of TWO HUNDRED FIVE AND 00/100 DOLLARS (\$205.00) per lot is due and payable to the District upon the first transfer of each lot by Owner after the execution of the Agreement as evidenced by "Agreement Creating Lien Upon Real Estate" recorded concurrently herewith.

4. Remedies: In the event of non-payment or in the event Owner is causing toxic or other unacceptable substances to be discharged to the District facilities, District may disconnect the property, seek restraining orders or damages, or both.

5. Pumping Charges and Costs: If this property has a drainage detention facility with or without pumps, the maintenance of such facilities is not the responsibility of the District.

EXECUTED at Merced, California this _____ day of _____, 2004.

By:

MERCED IRRIGATION DISTRICT OWNER: DRAINAGE IMPROVEMENT DISTRICT No. I DEVELOPER

DO NOT SIGN - EXHIBIT ONLY

DO NOT SIGN - EXHIBIT ONLY

Ross Rogers General Manager

By:

STATE OF CALIFORNIA} COUNTY OF _____ }ss

On this ______day of ______, 2004, before me, the undersigned, a Notary Public in and for said State, personally appeared _______, personally known to me (or proved on the basis of satisfactory evidence) to be the persons whose names are subscribed to the within MEMORANDUM OF DRAINAGE AGREEMENT and acknowledged to me that they executed the same in their authorized capacities, and that by their signatures on the instrument the persons, or the entity upon behalf of which the persons acted, executed the instrument.

WITNESS my hand and official seal.

Notary Public in and for said State

EXHIBIT "D"

RECORDING REQUESTED BY AND WHEN RECORDED RETURN TO: THIS SPACE FOR RECORDERS USE

Engineering Department Merced Irrigation District 744 West 20th Street(95340) P.O. Box 2288 Merced, California 95344-0288

AGREEMENT CREATING LIEN UPON REAL ESTATE

This Agreement is made this _____ day of _____, 2003 by and between _____, whose address is ______, Calif. _____ (herein referred to as Grantor) and the Merced Irrigation District Drainage Improvement District No. I, (herein referred to as Grantee).

WHEREAS, Grantor wishes to develop the real property located in Merced County, California, and legally described as set forth in Exhibit "A" attached hereto and incorporated herein by this reference; and

WHEREAS, Grantor has entered into an agreement of even date and as evidenced by a "Memorandum of Drainage Agreement" recorded concurrently herewith; and

WHEREAS, Grantor has agreed pursuant to Section (7), Paragraph "b" of said agreement to a one-time connection fee of TWO HUNDRED FIVE AND 00/100 DOLLARS (\$205.00) per lot, upon development, due and payable to the District upon the first transfer of each lot by Grantor after the execution of the Agreement which further grants a lien to the District for such fee on each lot of the property described in Exhibit "A".

THEREFORE, THE PARTIES HERETO DO MUTUALLY AGREE AS FOLLOWS:

1. Grantor hereby grants to Grantee a lien against the real property described in the attached Exhibit "A" as security under the above referenced agreement.

2. That the lien shall be for payment of said connection fees.

3. The lien created herein shall be superior to all other liens or encumbrances on the real property described in Exhibit "A".

4. That the lien shall become null and void as to each and every lot upon the issuance of a partial release by Grantee. Grantee shall respond to written request for demand and forward said partial release to escrow agent of Grantor upon payment; otherwise the lien shall remain in full force and effect.

IN WITNESS HEREOF the parties hereto have executed this Agreement as the date first above written.

MERCED IRRIGATION DISTRICT OWNER: DRAINAGE IMPROVEMENT DISTRICT NO. I DEVELOPER

DO NOT SIGN - EXHIBIT ONLY

Bv:

DO NOT SIGN - EXHIBIT ONLY

By:

Ross Rogers General Manager

STATE OF CALIFORNIA} COUNTY OF ______} ss

On this ______ day of ______, 2004, before me, the undersigned, a Notary Public in and for said State, personally appeared _______, personally known to me (or proved on the basis of satisfactory evidence) to be the persons whose names are subscribed to the within AGREEMENT CREATING LIEN UPON REAL ESTATE and acknowledged to me that they executed the same in their authorized capacities, and that by their signatures on the instrument the persons, or the entity upon behalf of which the persons acted, executed the instrument.

WITNESS my hand and official seal.

Notary Public in and for said State

THIS SPACE FOR RECORDERS USE

is

address

RECORDING REOUESTED BY AND WHEN RECORDED RETURN TO:

Engineering Department Merced Irrigation District 744 West 20th Street(95340) P.O. Box 2288 Merced, California 95344-0288

MEMORANDUM OF DRAINAGE AGREEMENT

whose for " .99 Calif. (hereafter "Owner"), and the Merced Irrigation District Drainage Improvement District No. I, (hereafter "District"), have entered into a Subdivision Drainage Agreement. This memorandum is a summary of such agreement and is recorded to provide notice of the pertinent terms of the Agreement. Any interested party may review the full agreement at the Offices of Merced Irrigation District Drainage Improvement District No. I.

The essential terms of the Agreement are:

Real Property: The terms of the Agreement affect real property located in Merced 1. County, California, and legally described as set forth in Exhibit "A" attached hereto and incorporated herein by this reference.

Drainage: Pursuant to the terms of the Agreement, the subject property will be 2. provided storm drainage services as set forth thereon.

Fees: The property and each subdivided parcel thereof shall be assessed an annual 3. drainage fee established by the District as modified from time to time. Said fee shall be collected on the real property tax rolls of Merced County, and shall constitute a lien on the property in favor of the District annually until paid. Additionally, a one-time connection fee of TWO HUNDRED FIVE AND 00/100 DOLLARS (\$205.00) per lot is due and payable to the District upon the first transfer of each lot by Owner after the execution of the Agreement as evidenced by "Agreement Creating Lien Upon Real Estate" recorded concurrently herewith.

4. Remedies: In the event of non-payment or in the event Owner is causing toxic or other unacceptable substances to be discharged to the District facilities, District may disconnect the property, seek restraining orders or damages, or both.

5. Pumping Charges and Costs: If this property has a drainage detention facility with or without pumps, the maintenance of such facilities is not the responsibility of the District.

EXECUTED at Merced, California this _____ day of _____, 2004.

MERCED IRRIGATION DISTRICT OWNER: DRAINAGE IMPROVEMENT DISTRICT No. I DEVELOPER

By:

Ross Rogers General Manager

By:

STATE OF CALIFORNIA}
COUNTY OF _____ }ss

On this ______day of ______, 2004, before me, the undersigned, a Notary Public in and for said State, personally appeared _______, personally known to me (or proved on the basis of satisfactory evidence) to be the persons whose names are subscribed to the within MEMORANDUM OF DRAINAGE AGREEMENT and acknowledged to me that they executed the same in their authorized capacities, and that by their signatures on the instrument the persons, or the entity upon behalf of which the persons acted, executed the instrument.

WITNESS my hand and official seal.

Notary Public in and for said State

RECORDING REQUESTED BY AND WHEN RECORDED RETURN TO: THIS SPACE FOR RECORDERS USE

Engineering Department Merced Irrigation District 744 West 20th Street(95340) P.O. Box 2288 Merced, California 95344-0288

AGREEMENT CREATING LIEN UPON REAL ESTATE

This Agreement is made this _____ day of _____, 2004 by and between _____, whose address is ______, Calif. _____ (herein referred to as Grantor) and the Merced Irrigation District Drainage Improvement District No. I, (herein referred to as Grantee).

WHEREAS, Grantor wishes to develop the real property located in Merced County, California, and legally described as set forth in Exhibit "A" attached hereto and incorporated herein by this reference; and

WHEREAS, Grantor has entered into an agreement of even date and as evidenced by a "Memorandum of Drainage Agreement" recorded concurrently herewith; and

WHEREAS, Grantor has Agreed Pursuant to Section (7), Paragraph "b" of said agreement to a one-time connection fee of TWO HUNDRED FIVE AND 00/100 DOLLARS (\$205.00) per lot, upon development, due and payable to the District upon the first transfer of each lot by Grantor after the execution of the Agreement which further grants a lien to the District for such fee on each lot of the property described in Exhibit "A".

THEREFORE, THE PARTIES HERETO DO MUTUALLY AGREE AS FOLLOWS:

1. Grantor hereby grants to Grantee a lien against the real property described in the attached Exhibit "A" as security under the above referenced agreement.

2. That the lien shall be for payment of said connection fees.

3. The lien created herein shall be superior to all other liens or encumbrances on the real property described in Exhibit "A".

4. That the lien shall become null and void as to each and every lot upon the issuance of a partial release by Grantee. Grantee shall respond to written request for demand and forward said partial release to escrow agent of Grantor upon payment; otherwise the lien shall remain in full force and effect.

IN WITNESS HEREOF the parties hereto have executed this Agreement as the date first above written.

MERCED IRRIGATION DISTRICT OWNER: DRAINAGE IMPROVEMENT DISTRICT NO. I DEVELOPER

By:

By:

Ross Rogers General Manager

STATE OF CALIFORNIA} COUNTY OF } ss

On this ______ day of ______, 2004, before me, the undersigned, a Notary Public in and for said State, personally appeared _______, personally known to me (or proved on the basis of satisfactory evidence) to be the persons whose names are subscribed to the within AGREEMENT CREATING LIEN UPON REAL ESTATE and acknowledged to me that they executed the same in their authorized capacities, and that by their signatures on the instrument the persons, or the entity upon behalf of which the persons acted, executed the instrument.

WITNESS my hand and official seal.

Notary Public in and for said State

PARTIAL RELEASE OF LIEN

WHEREAS, on ______, 2003, ______, whose address is ______, Calif. _____(hereinafter referred to as Grantor) and the MERCED IRRIGATION DISTRICT DRAINAGE IMPROVEMENT DISTRICT NO. I (hereinafter referred to as Grantee) have entered into an "Agreement Creating Lien Upon Real Estate", which agreement was recorded as instrument no.:______,

Merced County Records; and at this time Grantor has satisfied the conditions for partial release of the lien created in the above described agreement only as to the following described property:

Lot () as shown on map entitled "____" recorded ____,2003 in Volume ______ of Official Plats, at Pages _____, & ___, Merced County Records.

APN: - -

THEREFORE, THE GRANTEE HEREBY RELEASES all of its right, title and interest in the herein described property from the abovementioned "Agreement Creating Lien Upon Real Estate".

All other terms of said Agreement remain in full force and effect.

GRANTEE: MERCED IRRIGATION DISTRICT DRAINAGE IMPROVEMENT DISTRICT NO. I

By:_____

Minutes of Meetings with MID (5-19-04 & 8-2-05)

1899 Sapphire Way, El Dorado Hills, CA 95762 Consulting Inc:

Phone: (916) 801-3962 Fax: (916 933-4375

MEMORANDUM

May 26, 2004 Date:

orin Water

Those Listed Below To:

Jim Nelson (representing Harris & Associates) From:

City of Livingston Storm Drainage Master Plan Subject: Minutes of Meeting with Merced Irrigation District (5-19-04) Harris Project No. 041-0008.01

A meeting was held on May 19, 2004 at the offices of the Merced Irrigation District (MID) to discuss the forthcoming preparation of a Storm Drainage Master Plan (SDMP) for the City of Livingston and opportunities and constraints associated with utilizing MID irrigation facilities as points of storm drainage outfall. The following individuals participated in the meeting:

- Robert Acker, Director of Facilities and Planning, MID
- Hicham Eltal, Manager of Engineering, Water Resources, MID
- Ron Price, Associate Engineer, Water Resources, MID
- Greg Thompson, Facilities Specialist, MID
- Jim Nelson, SDMP Project Manager, Storm Water Consulting, Inc. •

Initially, Mr. Nelson provided a brief overview of the nature and scope of the forthcoming SDMP preparation and indicated that it is likely that it will be the City's desire to continue to utilize MID facilities as points of storm drainage outfall for urban runoff produced by future development. Mr. Nelson also stated that a goal for future storm drainage facilities will be to consolidate City storm drainage infrastructure within larger drainage watersheds (sub-basins) to provide greater opportunities to incorporate the use of greenbelt conveyance corridors and larger joint-use parks/detention basins as key infrastructure elements. These types of elements will enhance the public recreation and aesthetic benefits associated with storm drainage facilities and improve storm water guality.

A current aerial photograph obtained by Harris and Associates was utilized as a point of reference and work map for subsequent discussions.

City of Livingston Storm Drainage Master Plan Minutes of Meeting with MID (5-19-04) Page 2

The following is a synopsis of relevant items discussed at the meeting:

- MID staff identified several City detention ponds that utilize pumping facilities and discharge at low rates into MID irrigation canals. The discharge rates are regulated by Subdivision Drainage Agreements established between either developers or the City and MID. The allowable discharge rates are low, generally ranging from about 100 gallons per minute (gpm) to 800 gpm. [These rates may be converted to cubic feet per second (cfs) by dividing them by a factor of 448.8 gpm/cfs; and hence, are in the range of about 0.2 cfs to 1.8 cfs.]
- For the most part, MID facilities in the Livingston area carry irrigation water in the summer and storm water in the winter (based on rates allowed by Subdivision Drainage Agreements). However, there are periods of "overlap" from September through November and from March through May when irrigation water and storm water may be competing for the same capacity in MID facilities. In certain instances, MID may need to request a temporary delay in pumping of detention ponds during these periods of overlap.
- MID provided a sample Subdivision Drainage Agreement, including standard provisions and exhibits currently utilized by MID. These agreements call for the payment of a one time <u>connection fee</u> and an <u>annual maintenance fee</u> in order for storm water discharges to be authorized. The connection fee is paid to MID upon the close of escrow for individual parcels and subdivision lots. The annual maintenance fee is collected by MID as an annual assessment on Merced County property tax bills for individual parcels and subdivision lots.
- Current one time connection fees are: \$205 per subdivision lot and \$2,113 per impermeable acre of commercial/commercial office/industrial development.
- Current annual maintenance fees are: \$12.30 per subdivision lot and \$126.76 per impermeable acre of commercial/commercial office/industrial development.
- MID would like to see funding and financing options discussed in the SDMP, as related to the utilization of their facilities as points of storm drainage outfall. Mr. Nelson indicated that the scope of the SDMP includes a general discussion of funding alternatives for storm drainage infrastructure and an actual calculation of "impact fees" that may be applicable to <u>new development areas</u> in conformance with AB 1600. The possibility of incorporating the one time MID connection fee into an overall impact fee for new development areas may merit consideration; however, it appeared that the annual maintenance fee would continue to need to be assessed via other mechanisms as it is a continuing annual fee that is periodically subject to change.
- As an action subsequent to the City's adoption of the new SDMP, MID requested that a Memorandum of Understanding (MOU) between the City and MID be formulated and executed, indicating how fee collections will be made and how funds will be dispensed to MID.

City of Livingston Storm Drainage Master Plan Minutes of Meeting with MID (5-19-04) Page 3

- MID indicated that they would provide Mr. Nelson with an APN listing of properties that are currently subject to an annual maintenance fee assessment from MID in the Livingston area.
- Mr. Nelson indicated that, where possible, the SDMP may recommend the elimination of some existing detention ponds when storm drainage facilities for existing development areas may be incorporated into larger scale storm drainage facilities that will also serve future development.
- MID indicated that their facilities in the Livingston area include main lines and minor laterals. Main lines will generally be acceptable points of outfall for City storm drainage facilities. Minor laterals have limited capacity and will generally not provide suitable points for storm drainage outfall. The northeast quadrant of the SDMP study area was identified by MID as an area containing only minor laterals. New storm drainage facilities in this area will probably need to include one or more force mains to deliver low rates of storm water to the Livingston Canal to the north or the Arena Canal to the south. MID indicated that they would provide Mr. Nelson with a map of their facilities in the Livingston area delineating main lines and minor laterals within 1 week to aid in the preparation of the SDMP.
- If greater rates of discharge are desired by the City than are currently allowable based on limitations on the downstream capacity of MID facilities, MID will consider performing capital improvements to relevant facilities to improve capacity. These capital improvements will need to be funded by new development. MID staff expressed a willingness to determine the nature and cost of these capital improvements, if applicable, for use by the City's consulting team in their preparation of the SDMP.
- MID staff appointed Greg Thompson as their main point of contact for future coordination between the City's SDMP consulting team and MID.

At the conclusion of the meeting, Mr. Nelson thanked MID staff for their time and input and indicated that the consultant team would continue to coordinate with MID periodically during the preparation of the SDMP.

Distribution:

MID - Greg Thompson, Robert Acker, Hicham Eltal, Ron Price
City of Livingston – Nanda Gottiparthy
Harris and Associates – Steve Roberts, Doug Blatchford, Jodi Almassy
PMC – Brian Millar, Melissa Anthony
MIG – Sharon McNamee, Lauren Schmitt

Storin Water Consulting Inc. Phone: (916) 801-3962 Fax: (916 933-4375

MEMORANDUM

Date: August 4, 2005

To: Those Listed Below

From: Jim Nelson

Subject: City of Livingston Storm Drainage Master Plan Minutes of Meeting with Merced Irrigation District (8-2-05) Harris Project No. 041-0008.01; SWC Project No. 2004-15

A meeting was held on August 2, 2005 at the offices of the Merced Irrigation District (MID) to obtain MID input with regard to the draft version of the Storm Drainage Master Plan (SDMP) for the City of Livingston for incorporation into the forthcoming final version of the SDMP. Discussions included the contents of MID's letter dated July 1, 2005 that was submitted to the City of Livingston addressing MID's concerns about limitations in the capacity of their facilities to accept additional storm drainage in the absence of selected capital improvements. The following individuals participated in the meeting:

- Robert Acker, Director of Facilities and Planning, MID
- Hicham Eltal, Manager of Engineering, Water Resources, MID
- Larry Williams, Facilities Specialist, MID
- Bryan Kelly, Senior Engineer, MID
- Jim Nelson, SDMP Project Manager, Storm Water Consulting, Inc.

The following is a synopsis of relevant items discussed at the meeting:

- MID indicated that they have currently committed to accept a combined peak flow of about 12 cfs of City storm drainage in their facilities.
- In order for additional capacity to be provided to serve new development projects, MID will need to periodically upgrade portions of their facilities that act as the "critical capacity" at the time where additional capacity is needed. There is currently a roughly 1,600 L.F. segment of underground drain serving the Arena Canal south of the City that needs to be enlarged before additional storm drainage flows can be accepted.
- MID will work directly with developers and make arrangements for them to provide the funding needed to make applicable system capacity upgrades when needed.
 MID will manage the funding provided by developers for these capital improvements and any reimbursement agreements needed between MID and applicable developers.

City of Livingston Storm Drainage Master Plan Minutes of Meeting with MID (8-2-05) Page 2

 Mr. Nelson indicated that the draft version of the SDMP cites a combined projected total peak discharge of 9.25 cfs to MID facilities upon the buildout of the City's master planned storm drainage infrastructure. However, in the interim, it is likely that the existing MID commitment of to accept 12 cfs will need to be incrementally increased to serve development projects prior to construction of various elements of the City's master planned storm drainage facilities.

 MID stipulated that <u>all new development</u> that will utilize MID facilities as a point of outfall for storm drainage <u>will be required to execute a Drainage Agreement or a</u> <u>Deferred Drainage Agreement with MID</u>. This stipulation will be incorporated into the final version of the SDMP.

- MID indicated that there are a few existing developments that are draining to detention basins that discharge into MID facilities which are not covered by an existing Drainage Agreement and that the City needs to work with them to resolve this issue.
- MID will provide Mr. Nelson with language and/or details to incorporate into the final version of the SDMP relating to selected MID design requirements for pump systems that discharge storm drainage into MID facilities.
- MID indicated that the McCoy Lateral cannot be utilized as a point of outfall to serve Drainage Zone B. Instead, the Arena Canal to the east should be utilized for this purpose. Mr. Nelson indicated that the final version of the SDMP would reflect this change.
- MID indicated that the existing detention pond at the northeast corner of Winton Parkway and B Street is proposed to incorporate a force main that discharges into the Garibaldi/Hammett Lateral to the north (within Drainage Zone CC). Mr. Nelson indicated that this force main would be depicted in the final version of the SDMP.
- MID asked if they could be provided with a full size plot of Exhibit A from the draft version of the SDMP for their use. Mr. Nelson indicated that he would forward a full size plot to MID.
- MID indicated that Larry Williams will be their new primary point of contact for future coordination between the City's SDMP consulting team and MID, replacing Greg Thompson in this role.

At the conclusion of the meeting, Mr. Nelson thanked MID staff for their time, input and cooperation regarding the preparation of the City's SDMP.

Distribution:

MID – Larry Williams, Robert Acker, Hicham Eltal, Bryan Kelly City of Livingston – Gerald Forde, Nanda Gottiparthy Harris and Associates – Steve Roberts

HEC-1 Input/Output

**	********	*******	*******	*******	***
*					*
*	FLOOD HYI	ROGRAPH	PACKAGE	(HEC-1)	*
*	12002		1998		*
*		VERSION			*
*		1010101			*
*	RUN DATE	15.TUNO	7 TIME	14:08:01	*
*	non priib	1000110			*
++	*****	*******	*******	********	***

******* U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 ***** **

*

Х	х	XXXXXXX	XX	XXX		х
Х	х	х	Х	Х		XX
Х	Х	Х	Х			Х
XXXX	XXXX	XXXX	Х		XXXXX	Х
х	х	х	Х			Х
х	Х	Х	х	Х		Х
х	Х	XXXXXXX	XX	XXX		XXX

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

	HEC-1 INPUT	PAGE	1
LINE	ID1		
1 2 3 4 5 6	ID CITY OF LIVINGSTON ID STORM DRAINAGE MASTER PLAN ID 10-YR & 100-YR STORM EVENTS ID 24-HR STORM DURATION ID ************************************		
7 8 9 10 11	ID IT 5 04FEB05 0 300 IN 30 04FEB05 0 JR PREC 1 1.3883 IO 5 *DIAGRAM *		
	 * THIS FINAL MODEL SIMULATES 10-YR AND 100-YR PEAK DISCHARGE FOR THE 24-HR * STORM EVENT. THE STUDY AREA HAS BEEN DIVIDED INTO DRAINAGE ZONES A * THROUGH L TO APPROXIMATE RUNOFF. IN DETERMINING APPROXIMATE STORAGE * VOLUMES FOR TERMINAL DETENTION BASINS SERVING DRAINAGE ZONES, IT HAS * BEEN ASSUMED THAT DETENTION PONDS WILL DRAIN BY PUMPING AT VARIOUS RATES * THAT ARE NOTED IN ANNOTATION BELOW, FORMING THE BASIN RELATIONSHIPS. * * DRAINAGE ZONE A HAS BEEN FURTHER SUBDIVIDED INTO TWELVE (12) SUBBASINS. * CHANNEL PARKWAY ALONG MAGNOLIA AVENUE HAS BEEN REPLACED WITH 		
	* AN UNDERGROUND STORM DRAIN. * ***********************************		
	* BEGIN DRAINAGE ZONE A MODEL * * ************** June 8, 2007 *****************		
10	KK A2-1A		
12 13	21		
13	KM NEW BASIN EAST OF SULTANA AND SOUTH OF HWY 99 (SUB-BASIN A2-1A)		
15	KM Area = 0.734 sq mi		
16	BA 0.734		
17	PB 2.06		
	* BC 0 0.008 0.017 0.026 0.035 0.045 0.055 0.065 0.076 0.087		
18	PC 0 0.008 0.017 0.026 0.035 0.017 0.194 0.219 0.254 0.303		
19	PC 0.099 0.112 0.126 0.14 0.130 0.1716 0.728 0.748 0.766 0.783		
20	PC 0.515 0.585 0.024 0.035 0.057 0.07 0.883 0.803 0.905 0.916		
21 22	PC 0.799 0.815 0.83 0.844 0.857 0.87 0.882 0.093 0.003 0.003 PC 0.926 0.936 0.946 0.956 0.965 0.974 0.983 0.992 1 1		
	* LS 84.8		
23 24	UD 0.71		
24	*		
	*		
	* *********** JUNE 8, 2007 ADD DETENTION BASIN A2A **********************************		
	*		

	HEC-1 INPUT	P
LINE	ID12345678910	
25 26 27 28	KK DETA2A KO 3 KM DETENTION BASIN A2A KM ASSUMES THE FOLLOWING PARAMETERS:	
	<pre>* ***********************************</pre>	
29 30 31 32	* RS 1 STOR -1 SA 9.4 9.585 9.77 9.955 10.14 10.325 10.51 10.695 10.88 11.25 SE 120 121 122 123 124 125 126 127 128 130 SQ 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 *	
33 34 35 36	KK RA2-1A KM ROUTE FLOW FROM A2-1A TO A2-1 KM FROM SULTANA DR TO HUNTER RD RK 3200 0.002 0.015 CIRC 3.5 *	
37 38 39 40 41	KK A2-1 KM SUBBASIN A2-1 BA 0.450 * LS 80.5 LS 82.3 UD 0.41 *	
42 43 44	KK COMB 1 KM COMBINE FLOW FROM BAISNS A2-1A & A2-1 HC 2	
45 46 47 48 49	KK A2-2 KM SUBBASIN A2-2 BA 0.201 * LS 76.6 LS 71.2 UD 0.41 *	

PAGE 2

	HEC-1 INPUT	PAGE	3
LINE	ID12345678910		
50 51 52 53 54	KK A2-3 KM SUBBASIN A2-3 BA 0.101 LS 76.1 UD 0.31 *		
55 56 57 58	KK A2 21 KO 3 KM COMBINE SUBBASIN A2-1, AND SUBBASIN A2-2, & A2-3 ALL BEFORE ENTERING DET A2B HC 3 * **********************************		
59 60 61 62	KK DETA2B KM DETENTION BASIN A2B KM ASSUMES THE FOLLOWING PARAMETERS: * ************************************		
63 64 65 66	* RS 1 STOR -1 * SA 6.94 7.02 7.1 7.18 7.26 7.34 7.42 7.5 7.58 7. SA 9.40 9.585 9.770 9.955 10.140 10.325 10.510 10.695 10.880 11.250 SE 115 116 117 118 119 120 121 122 123 125 SQ 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0		
67 68 69	KK RCP-AZ KM ROUTE DET BASIN OUTFLOW TO CP-AY1 (UPSTREAM REACH) * RK 5200 0.0001 0.05 TRAP 100 3 RK 5200 0.0001 0.015 CIRC 2.0 *		
70 71 72 73 74	KK A2-5 KM SUBBASIN A2-5 BA 0.495 * LS 72.1 LS 71.2 UD 0.63 *		

	HEC-1 INPUT	PAGE	4
LINE	ID1		
75 76 77 78 79	KK A2-4 KM SUBBASIN A2-4 BA 0.322 * LS 77.9 LS 76.5 UD 0.56 *		
80 81 82	KK CPA-Y1 KM COMBINE ROUTING OF BASIN FLOW TO STORM DRAIN, SUBBASIN A2-5, AND SUBBASIN A2-4 HC 3 *		
83 84 85 86 87	KK A3-1 KM SUBBASIN A3-1 BA 0.152 LS 78.8 UD 0.40 *		
88 89 90 91 92	KK A3-2 KM SUBBASIN A3-2 BA 0.100 LS 76.0 UD 0.31 *		
93 94 95 96 97	KK A3-3 KM SUBBASIN A3-3 BA 0.181 * LS 77.6 LS 75.7 UD 0.52 *		
98 99 100	KK CPA-Y2 KM COMBINE CP-AY1, SUBBASIN A3-1, SUBBASIN A3-2, AND SUBBASIN A3-3 ALL AT CP-AY2 HC 4 *		
101 102 103	KK RCPAY2 KM ROUTE CP-AY2 TO CP-AX * RK 1500 0.0001 0.05 TRAP 100 3 RK 1500 0.0001 0.015 CIRC 5.5 *		
104 105 106 107 108	KK A2-6 KM SUBBASIN A2-6 BA 0.468 * LS 70.8 LS 72 UD 0.56 *		

	HEC-1 INPUT	PAGE 5
LINE	ID1	
LINE		
109	KK CP-AX	
110	KM COMBINE CP-AY2, AND SUBBASIN A2-6 ALL AT CP-AX	
111	HC 2	
	KK RCP-AX	
112 113	KM BOUTE CP-AX TO DETENTION BASIN A1	
110	* RK 2400 0.0001 0.05 TRAP 100 3	
114	RK 2400 0.0001 0.015 CIRC 6.0	
115	KK Al-1	
116	KM SUBBASIN A1-1	
117	BA 0.177 * LS 70.1	
118	LS 69.6	
119	UD 0.24	
	* .	
120	KK A1-2	
121	KM SUBBASIN A1-2	
122	BA 0.317 * LS 70.3	
123	LS 69.7	
123	UD 0.23	
	*	
125	KK DETA1	
126	KO 3 KM COMBINE RCP-AX, SUBBASIN A1-1, AND SUBBASIN A1-2 ALL AT DETENTION BASIN A1	
127	KM COMBINE RCP-AX, SUBBASIN AI-I, AND SUBBASIN AI-Z HER IN DELECTION DATA HC 3	
128	*	
	KK DETA1	
129	KK DETAL * KO 3	
	* KO 1 2	
130	KO 3 21 KM DETENTION BASIN A1	
131 132	KM ASSUMES THE FOLLOWING PARAMETERS:	
152	*	
	* ************************************	
	* * BOTTOM LENGTH (FT) 660	
	* * BOTTOM AREA (AC) 10.00	
	* * TOP WIDTH (FT) 700	
	* * TOP LENGTH (FT) 700	
	* * TOP AREA (AC) 11.25	
	* * VOLDALE (FLMP) 2	
	* * BOTTOM ELEVATION (FT) 96	
	* * TOP ELEVATION (FT) 116	
	* *************************************	

	HEC-1 INPUT	PAGE 6
LINE	ID12345678910	
133 134 135 136	RS 1 STOR -1 SA 10 10.13 10.26 10.39 10.52 10.65 10.78 10.91 11.04 11.25 SE 96 98 100 102 104 106 108 110 112 116 SQ 0 02 02 02 02 02 02 02 02 02 02 *	
	* *	
	* BEGIN DRAINAGE ZONE B MODEL *	
137 138 139 140 141 142	KK B 21 KM DRAINAGE ZONE B BA 1.467 * LS 71.2 LS 71.8 UD 0.72	
142	*	
143	KK DETB * KO 3 * KO 1 2	
144	KO 3 KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE B, SOUTH OF MAGNOLIA	
145 146	KM ASSUMES THE FOLLOWING PARAMETERS:	
	* * **********************************	
	* * BOTTOM WIDTH (FT) 490 * * BOTTOM LENGTH (FT) 490 * * BOTTOM AREA (AC) 5.51 * * SIDE SLOPES (H:V) 3:1 * * DEPTH (FT) 20	
· ·	* * TOP WIDTH (FT) 540 * * BOTTOM LENGTH (FT) 540 * * TOP AREA (AC) 6.69 * * VOLUME (AC-FT) 122.00	
	* * DISCHARGE (PUMP) 0.5 * * BOTTOM ELEVATION(FT) 90 * * TOP ELEVATION (FT) 110 * ***********************************	
147	* RS 1 STOR ⁻¹	
148 149	* SA2.09 2.26 2.44 2.65 2.69 6.11 6.23 6.35 6.47 6.69 SA 5.51 5.63 5.75 5.87 5.99 6.11 6.23 6.35 6.47 6.69 SE 90 92 94 96 98 100 102 104 106 110 SE 90 92 94 96 0.50 0.50 0.50 0.50 0.50 0.50	
150	SQ 0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	
151 152 153 154 155 156	KK C 21 KO 3 21 KM DRAINAGE ZONE C BA 0.391 LS 70.4 UD 0.35	
	UD 0.35 * ******************* June 7, 2007 Detention Data Revised **************** *	

.

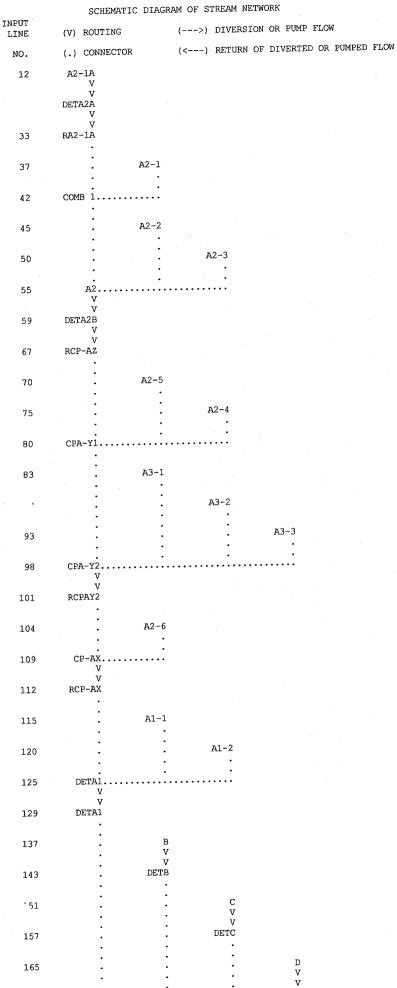
HEC-1	INPUT

INE	ID1
157	KK DETC * KO 3
	* KO 1 2
158	KO 3 KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE C, ADJACENT ARENA CANAL
159	KM DETENTION BASIN AT TERMINUS OF DRAINAGE 2018 OF IDENTIFIED AND A SUMES THE FOLLOWING PARAMETERS:
160	
	* * **********************************
	* * BOTTOM WIDTH (FT) 181 * * BOTTOM LENGTH (FT) 181
	* * BOTTOM AREA (AC) 0.75
	* * SIDE SLOPES (H:V) 3:1
	* * DEPTH (FT) 20 * * TOP WIDTH 289
	* * BOTTOM LENGTH (FT) 289
	* * TOP AREA (AC) 1.917 * * VOLUME (AC-FT) 14.00
	* * VOLUME (AC-FT) 14.00 * * DISCHARGE (PUMP) 1
	* * BOTTOM ELEVATION (FT) 100
	* * TOP ELEVATION (FT) 120 * * *********************************
	* ******************************
1 6 1	 * RS 1 STOR $^{-1}$ RS 0.00 0.70 0.90 1.02 1.
161	* SA 0.28 0.35 0.43 0.51 0.60 0.69 0.79 0.90 1.02 1.02
162	SA 0.75 0.88 1.009 1.139 1.269 1.059 1.025
163	SE 100 102 104 100 103 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
164	SQ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
165	KK D 21
166 167	KO 3 ZI KM DRAINAGE ZONE D
101	* BA 0.853
168	BA 0.694 * LS 81.9
169	* LS 81.9 LS 79.7
170	UD 0.73 * ****************************** June 7, 2007 Detention Data Revised ************************************
	* ********************************* June 7, 2007 Decencion Data Revised
	X
171	KK DETD
172	КО 3 * КО 1 2
	10 - 01
173	KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE D, NORTH OF VINEWOOD B STREAM
174	KM ASSUMES THE FOLLOWING PARAMETERS:
	* * ***********************************
	* * BOTTOM WIDTH (FT) 346
	\star \star BOTTOM HENRIF (12) 2.75
	+ + SIDE SLOPES (H:V) 3:1
	* * DEPTH (FT) 20
	* * TOP WIDTH (FT) 454 * * BOTTOM LENGTH (FT) 454
	* * BOLION DENGIN (17) * * TOP AREA (AC) 4.73
	* * VOLUME (AC-FT) 46.00
	* * DISCHARGE (FOHF)
	* * BOTTOM ELEVATION (FT) 95 * * TOP ELEVATION (FT) 115
	* * TOP ELEVALION (c1) * ***********************************

	HEC-1 INPUT	PAGE 8
LINE	ID1	
175	RS 1 STOR $^{-1}$ * SA2.17 2.36 2.56 2.77 2.98 3.20 3.43 3.66 3.90 4.15 * SA2.17 5.42 5.67 5.	
176 177 178	* SA 3.67 3.97 3.19 3.41 3.63 3.85 4.07 4.29 4.51 4.73 SA 2.75 2.97 3.19 3.41 3.63 3.85 4.07 4.29 4.51 4.73 SE 95 97 99 101 103 105 107 109 111 113 SE 95 97 99 101 103 105 107 109 111 113 SQ 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 * <	
179 180 181 182 183 184	KK F 21 KM DRAINAGE ZONE F BA 0.647 LS 72.5 UD 0.50 * ***********************************	
185 186 187	KK DETF KO 3 * KO 1 2 21 * KO 3 KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE F, SOUTH OF OLIVE AVENUE	
188	KM ASSUMES THE FOLLOWING PARAMETERS: * ************************************	
189 190 191 192	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
193 194 195 196 197 198	<pre>KK G 21 KM DRAINAGE ZONE G BA 0.322 LS 81 UD 0.53 * ***********************************</pre>	

	HEC-1 INPUT
LINE	ID12345678910
199 200 201	KK DETG KO 3 * KO 1 2 21 * KO 3 KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE G, ADJACENT HWY 99
202	KM ASSUMES THE FOLLOWING PARAMETERS:
	* ************************************
	* * VOLUME (AC-FT) 16.0 * * DISCHARGE (PUMP) 0.5 * * BOTTOM ELEVATION (FT) 115 * * TOP ELEVATION (FT) 135 * * ************************************
203 204 205 206	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	* * **********************************
207 208 209 210 211 212 213	KK K 21 KM DRAINAGE ZONE K KM AREA NORTH OF ARENA CANAL & EAST OF SULTANA DR BA 1.50 LS 83.5 UD 0.85 *
214 215 216 217	KK DET K KO 3 KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE K, ADJACENT SULTANA DR KM ASSUMES THE FOLLOWING PARAMETERS:
	* BOTTOM WIDTH (FT) 660 * BOTTOM LENGTH (FT) 660 * BOTTOM AREA (AC) 10.0 * SIDE SLOPES (H:V) 3:1 * DEPTH (FT) 750 * BOTTOM LENGTH (FT) 750 * DEPTH (FT) 750 * BOTTOM LENGTH (FT) 108.0 * DISCHARGE (FUMP) 0.5 * BOTTOM ELEVATION (FT) 125 * TOP ELEVATION (FT) 140 * ************************************

PAGE 9


	HEC-1 INPUT	PAG
LINE	ID1	
218 219 220 221	RS 1 STOR -1 SA 10.0 10.291 10.582 10.873 11.164 11.455 11.746 12.037 12.328 12.91 SE 125 126.5 128 129.5 131 132.5 134 135.5 137 140 SQ 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	
222 223 224 225 226 227 228	KK L 21 KO 3 21 KM DRAINAGE ZONE L KM AREA BETWEEN ARENA CANAL & HWY 99 AND EAST OF SULTANA DR BA 0.250 LS 81.8 UD 0.33 *	
229 230 231 232	KK DET L KO 3 * KO 1 2 21 * KO 3 KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE L, ADJACENT HWY 99 KM ASSUMES THE FOLLOWING PARAMETERS:	
	* * * * * BOTTOM WIDTH (FT) 247 * * BOTTOM LENGTH (FT) 31 * * DEPTH (FT) 15 * * DEPTH (FT) 15 * * DOTTOM LENGTH (FT) 337 * * BOTTOM LENGTH (FT) 337 * * DISCHARGE (PUMP) 0.5 * * DISCHARGE (PUMP) 125 * TOP ELEVATION (FT) 140 * * * * * * * * * * * * * * * * * * *	
233 234 235 236	* RS 1 STOR -1 SA 1.4 1.521 1.642 1.763 1.884 2.005 2.126 2.247 2.368 2.61 SE 125 126.5 128 129.5 131 132.5 134 135.5 137 140 SE 125 126.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
237 238 239 240 241 242	KO 3 21 KM DRAINAGE ZONE H BA 0.699 * LS 79.0 LS 81.1	


່ພະມຸ

	HEC-1 INPUT	PAGE II
LINE	ID1	
243	KK DETH * KO 3	
244	21	
245	KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE H, ADJACENT HIGHWAI 99	
246	KM ASSUMES THE FOLLOWING PARAMETERS:	
	* * * * * * * * * * * * * * * * * * * *	
	* * BOTTOM LENGTH (FT) 3/5 ADD 125 = 500 2-15 00 * * BOTTOM AREA (AC) 1.41 3.32	
	* * SIDE SLOPES (H:V) 3:1	
	+ + DEPTH (FT) 20	
	TOP WIDTH (FT) 272 ADD 125'= 397	
	* * BOTTOM LENGTH (FT) 483 ADD 125'= 608	
	* * TOP AREA (AC) 3.02 5.54	
	* * VOLUME (AC-FI)	
	* * DISCHARGE (PUMP) 0.5 cfs	
	* * BOITON ELEVATION (11)	
	* * TOP ELEVATION (FT) 135 * ***********************************	
	* ***********	
247	1 500	
040	3 32 3 57 3.82 4.07 4.32 4.57 4.82 5.07 5.32 5.57	
248 249	SE 115 117 119 121 123 125 127 129 131 133	
250	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
250		
	*	
	-	
251	КК I КО 3 21	
252	KO 3 21 KM DRAINAGE ZONE I	
253	BA 0.314	
254	* LS 75.3	
255	LS 84.5	
256	UD 0.40	
	UD 0.40 * ******************* June 7, 2007 Detention Data Revised ***********************	
	*	
257	KK DETI KO 3	
258	ко 3 * ко 1 2	
	21	
259	KM DETENTION BASIN AT TERMINUS OF DRAINAGE ZONE I, SOUTH OF HWY 99	
260	KM ASSUMES THE FOLLOWING PARAMETERS:	
	* * ***********************************	
	* * BOTTOM WIDTH (FT) 101 * * BOTTOM LENGTH (FT) 181	
	$\begin{array}{c} * \\ * \\ * \\ \end{array} \qquad \qquad$	
	* * SIDE SLOPES (H:V) 3:1	
	* * DEPTH (FT) 20	
	* * TOP WIDTH (FT) 289	
	* * BOTTOM LENGTH (FT) 289	
	* * TOP AREA (AC) 1.917	
	* * VOLUME (AC-FT) 16.0	•
	* * DISCHARGE (PUMP) 0.5	
	BOITON BERNILLON (12)	
	* * TOP ELEVATION (FT) 130 * ***********************************	
	*	

					HEC-1	INPUT						PAGE
LINE		ID1	2.	3.	4.	5,	6.	7.	8.	9.	10	
261		RS 1 * SA0.37 * SA 0.49	••••	-1 0.52 .71	0.61 0.82	0.70 0.93	0.80 1.04	0.91 1.15	1.26	1.15 1.37	1.27 1.	
262	,	SA 0.75	0.88	1.009	1.139	1.269	1.399	1.528	1.658	1.788 126	1.917 128	
263		SE 110		114	116	118	120	122	124	0.5	0.5	
264		SQ (*	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	
265		ZZ										

GE 12

1 ERRORS IN STREAM SYSTEM

**** 44 FLOOD HYDROGRAPH PACKAGE (HEC-1) JUN 1998 VERSION 4.1 RUN DATE 15JUN07 TIME 14:08:01 * ************

U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 ******

*** *** *** *** *** *** ***

*

*

*

*

*

*

*

CITY OF LIVINGSTON STORM DRAINAGE MASTER PLAN 10-YR & 100-YR STORM EVENTS 24-HR STORM DURATION *************

11	IO	OUTPUT CONTROL VARIABLES	
			PRINT CONTROL PLOT CONTROL
		21201	HYDROGRAPH PLOT SCALE
		QSCAL 0.	
	IT	HYDROGRAPH TIME DATA	
	TT	NMIN 5	MINUTES IN COMPUTATION INTERVAL
			STARTING DATE
			STARTING TIME NUMBER OF HYDROGRAPH ORDINATES
		NQ 300 NDDATE 5FEB 5	ENDING DATE
		NDTIME 0055	ENDING TIME
		ICENT 19	CENTURY MARK
		COMPUTATION INTERVAL	.08 HOURS
		TOTAL TIME BASE	24.92 HOURS
		ENGLISH UNITS	
		DRAINAGE AREA SQUA	RE MILES
		PRECIPITATION DEPTH INCH	
		LENGTH, ELEVATION FEET	
		1100	C FEET PER SECOND FEET
			EES FAHRENHEIT
		i hit huit ora	
	JP	MULTI-PLAN OPTION	
		NPLAN 1	NUMBER OF PLANS
	TD	MULTI-RATIO OPTION	
	JR	RATIOS OF PRECIPITAT	TION
		1.00 1.39	
+++	*** :	*** *** *** *** *** ***	*** *** *** *** *** *** *** *** *** *** *** *** *** ***

		* A2-1A *	
12	KK	* HZ-IA * *	

			_
13	B KO	OUTPUT CONTROL VARIABLE	S PRINT CONTROL
		IPRNT 3 IPLOT 0	PLOT CONTROL
		QSCAL 0.	HYDROGRAPH PLOT SCALE
		IPNCH 0	PUNCH COMPUTED HYDROGRAPH
		ד סזידי 21	SAVE HYDROGRAPH ON THIS UNIT
			FIRST ORDINATE PUNCHED OR SAVED
		ISAV2 300	
		TIMINT .083	
		NEW BASIN EAST	OF SULTANA AND SOUTH OF HWY 99 (SUB-BASIN A2-1A)
		Area = 0.734 s	q mi
1	9 IN	TIME DATA FOR INPUT TIM	E SERIES TIME INTERVAL IN MINUTES
		JXMIN 30 JXDATE 4FEB 5	STARTING DATE
		JXTIME 0	STARTING TIME
		UVI TUP	

SUBBASIN RUNOFF DATA

16 BA	SUBBASIN CHARAC TAREA	TERISTICS .73	SUBBASIN	I AREA						
	PRECIPITATION D	ATA								
⊥/ PB	STORM	2.06	BASIN TO	TAL PRECIE	PITATION					
18 PI	INCREMENTAL P .00 .00 .00	RECIPITAT .00 .00 .00	ION PATTI .00 .00 .00	ERN .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00

					00 00	.00	.00	.00	.UU .00	.00	.00		-
		.00	.00 .	00 · 00 ·	00 00 00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00		
		.00	.00 .	00 .	00 01 01	.00 .01 .04	.00 .01 .04	.00 .01 .04	.00 .01 .04	.00 .01 .04	.00 .01 .04		
		.01	.01 .	01 - 01 -	01 01 00	.01 .01 .00	.01 .01 .00	.01 .01 .00	.01 .01 .00	.01 .00 .00	.01 .00 .00 .00		
		.00	.00 .	00 .	00 00 00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00	.00 .00 .00	.00 .00 .00		
		.00	.00 .00	00 .	00 00 00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00		
		.00 .00	.00 .00 .	00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00	.00 .00	.00		
			.00	00	.00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00		
		.00			.00 .00	.00 .00	.00	.00	.00				
23 LS	SCS	LOSS RATE STRTL CRVNBR RTIMP	84.80 CU	NITIAL ABS JRVE NUMBEI ERCENT IMPI	R .								
24 UD	SCS	DIMENSIONLES TLAG	S UNITGRAPI	H AG									
					TINT	***	2R A PH						
	18.	56.	108.	179.	45 END-0 270. 234.	DF-PERIO 360 193	ORDINATES 426.	463. 133.	472. 114.	464. 95.			
	432. 79. 13. 2.	394. 66. 11. 2.	348. 55. 9. 1.	291. 46. 8. 1.	38. 6. 0.	32		22. 4.	18. 3.	16. 3.			
TOTAL	RAINFALL =	2.06, TOT	TAL LOSS =				.83						
PEAK FLO (CFS) 93.	(HR)	(CFS) (INCHES)	6-HR 41. .517	MAXIMUM 24-HR 16. .824		72-HR 16. .824	24.92-HR 16. .824						
		(AC-FT)	20. VE AREA =	32. .73 SQ	MI	32.	32.						
***		***	***		***		***						
		HYDROGR FOR P	APH AT STAT LAN 1, RATI	ION A2- O = 1.00	1A								
TOTAL	, RAINFALL =	2.06, TO	TAL LOSS =	1.23, T	OTAL EX	CESS =	.83						
PEAK FLC (CFS)	W TIME (HR)		6-HR	MAXIMUM 24-HF	ε	FLOW 72-HR 16.	24.92-HR 16.						
93.	10.67	(CFS) (INCHES) (AC-FT)	41. .517 20.	16. .824 32.		.824	.824 32.						
		CUMULATI	VE AREA =	.73 SQ	MI								
***	k	***	***		***		***						
		HYDROGR FOR P	APH AT STAT	CION A2- CO = 1.39	-1A								
TOTAI	L RAINFALL =	= 2.86, TO	TAL LOSS =		TOTAL EX		1.46						
PEAK FLO (CFS)	(HR)	(070)	6-HR 73.	MAXIMUM 24-HI 29	3	: FLOW 72-HR 28.	24.92-HR 28.						
178.	. 10.58	(CFS) (INCHES) (AC-FT)	.925 36.	1.45 57)	1.450 57.	1.450 57.						
		CUMULATI	VE AREA =	.73 SQ	MI								
												. ب ب ب ب	*** ***
* ***	*** *** ***	*** *** ***	*** *** **	* *** ***	*** ***	*** ***	*** *** ***	*** *** *:	** *** ***	*** *** **	* *** *		

************* *

DETA2A * 25 KK * * * *********

26 KO	OUTPU	JT CONTROL V	VARIABLES									
20 000		IPRNT		PRINT CONT PLOT CONTI								
		IPLOT QSCAL		HYDROGRAPI		ALE						
		DETENT	ION BASIN A	A2A	AMETERS:							
	HYDROGI	ASSUME:		OWING IFEC								
- S	STORA	AGE ROUTING NSTPS	1 1	NUMBER OF	SUBREACH	ES						
		ITYP RSVRIC	STOR -1.00	TYPE OF INITIAL CO	NITIAL CO ONDITION	NDITION						
		X	.00 W	ORKING R	AND D COE	FFICIENT						
30 SA		AREA	9.4	9.6	9.8	10.0	10.1	10.3	10.5	10.7	10.9	11.3
								105 00	106.00	127.00	128.00	130.00
31 SE	ELEVA	ATION	120.00	121.00	122.00	123.00	124.00	125.00	126.00	127.00	120.00	100000
			0	1.	1.	1.	1.	1.	1.	1.	1.	1.
32 SQ	DISC	HARGE	0.	1.								

				co	MPUTED ST	ORAGE-ELEV	ATION DATA					
								59.73	70.33	81.12	103.25	
1	STORAGE ELEVATION	.00 120.00	9.49 121.00	19.17 122.00	29.03 123.00			126.00	127.00	128.00	130.00	
***		***	***		***		***					
		HYDROGR	APH AT STA	TION DE	TA2A			•				
		FOR F	LAN 1, RAT	IO = 1.00								
PEAK FLOW			6 UD	MAXIMU 24-	M AVERAGI	E FLOW 72-HR	24.92-HR					
(CFS) 1.	(HR) 11.42	(CFS)	6-HR 1.		0.	0.	0.					
1.	11.10	(INCHES)	.006		15 1.	.015 1.	.015 1.					
		(AC-FT)	0.									
PEAK STORA (AC-FT)	GE TIME (HR)		6-HR		1 AVERAGE -HR	72-HR	24.92-HR					
(AC-F1) 32.	24.92		29.	1	L 3.	13.	13.					
PEAK STAG	E TIME				M AVERAG		24.92-HR					
(FEET) 3.26	(HR) 24.92		6-HR 122.96		-нк .39	72-HR 121.34	121.34					
		OID OIL A DI	IVE AREA =	.73 5	SO MT							
		COMULAL			×							
***		***	***		***		***					
		UVDROCI	RAPH AT STA	ATTON DE	ETA2A							
		FOR 1	PLAN 1, RA	TIO = 1.39	9							
PEAK FLOW	TIME				UM AVERAG	E FLOW	04 00 IT					
(CFS)	(HR)	(050)	6-HR 0.		-HR 0.	72-HR 0.	24.92-HR 0.					
1.	10.58	(CFS) (INCHES)	.006		016	.016	.016					
		(AC-FT)	0.		1.	1.	1.					
PEAK STORA	GE TIME				M AVERAGE	STORAGE	24 02 UD					
(AC-FT) 56.	(HR) 24.92		6-HR 51.		-HR 25.	72-HR 24.	24.92-HR 24.					
				MAXIM	UM AVERAG	E STAGE						
PEAK STAC (FEET)	E TIME (HR)		6-HR	24	-HR	72-HR	24.92-HR 122.44					
125.65	24.92		125.20	122	.53	122.44	122.44					
		CUMULAT	IVE AREA =	.73	SQ MI							
						• ــــــــــــــــــــــــــــــــــــ	** *** ***	*** *** **	* *** ***	*** *** *:	** *** ***	*** *** ***
*** *** *:	** *** ***	*** *** ***	*** *** *	** *** **	* *** ***	****						
	. د. اد بله بله بله بله بله	*****										
	*	*										
55 KK	*	A2 * *										
	والمرجاء والرواد والرواد والرواد والرواد	*****										

OUTFUT CONTROL VARIABLES IPRNT 3 IPLOT 0 QSCAL 0. IPNCH 0 IOUT 21 ISAV1 1 ISAV2 300 TIMINT .083

 IABLES

 3
 PRINT CONTROL

 0
 PLOT CONTROL

 0.
 HYDROGRAPH PLOT SCALE

 0
 PUNCH COMPUTED HYDROGRAPH

 21
 SAVE HYDROGRAPH ON THIS UNIT

 1
 FIRST ORDINATE PUNCHED OR SAVED

 300
 LAST ORDINATE PUNCHED OR SAVED

 .083
 TIME INTERVAL IN HOURS

 56 KO

58 HC	HYDROC	GRAPH COMBIN	IATION 3 NUM	BER OF HYDE	ROGRAPHS	S TO COMB	INE					
		10011				***						
***		* * *	***	*:	**	*	**					
		HYDROGRAI FOR PL4	PH AT STATIO	ON A2 = 1.00								
PEAN FLOW	TIME			MAXIMUM AV	ERAGE F	LOW 2	4.92-HR					
(CFS) 68.	(HR) 10.33	(CFS)	6-HR 28.	24-HR 12.		11.	11.					
00.	10.55	(INCHES) (AC-FT)	.172	.290 23.		290 23.	.290 23.					
		CUMULATIV		1.49 SQ MI								
***		***	* * *	*	**	*	**					
		HYDROGRA FOR PL	PH AT STATIO	ON A2 = 1.39						. •		
	TIME			MAXIMUM AV	ERAGE F	LOW						
PEAK FLOW (CFS)	(HR)	(070)	6-HR 55.	24-HR 22.	72	2-HR 2 21.	24.92-HR 21.					
158.	10.25	(CFS) (INCHES) (AC-FT)	.344 27.	.554		.554 44.	.554 44.				,	
		CUMULATIV		1.49 SQ MI								
				*** *** ***	* *** **	** *** **:	* *** *** ***	* *** ***	*** *** **	* *** ***	*** *** **	* *** ***
*** *** ***	*** *** **	** *** *** *	** *** ***									
	*******	****										
59 KK	* * DETA2	* 2B *										
59 MK	*	*										
60 KO	OUTP	JT CONTROL V	VARIABLES									
00 110		IPRNT IPLOT	3 PI 0 PI	NINT CONTRO								
		QSCAL DETENT	TON BASIN A	(DROGRAPH P 2B		LE						
9 1			S THE FOLLO	VING PARAME	TERS:					•		
	HYDROG	RAPH ROUTIN	g data									
63 RS	STOR	AGE ROUTING NSTPS ITYP RSVRIC X	1 N STOR T	UMBER OF SU YPE OF INIT NITIAL CONE RKING R ANE	IAL CON	IDITION						
64 SA		AREA	9.4	9.6	9.8	10.0	10.1	10.3	10.5	10.7	10.9	11.3
65 SE	ELEV		115.00 1	16.00 11	7.00	118.00	119.00	120.00	121.00	122.00	123.00	125.00
00 02							1.	1.	1.	1.	1.	1.
66 SQ	DISC	HARGE	0.	1.	1.	1.	1.					

				COMPU	JTED ST	ORAGE-ELE	VATION DATA					
	STORAGE ELEVATION	.00 115.00	9.49 116.00	19.17 117.00	29.03 118.00			59.73 121.00	70.33 122.00		103.25 125.00	
		* * *	***		***		***					
***			RAPH AT STAT	TON DETA	2B							
		FOR 1	PLAN 1, RAT	IO = 1.00 MAXIMUM		FLOW						
PEAK FLOW (CFS)	(HR)		6-HR 1.	24-HR 0.		72-HR 0.	24.92-НR 0.					
1.	12.92	(CFS) (INCHES)	.003 0.	.007		.007 1.	.007 1.					
		(AC-FT)	0.	MAXIMUM A								-
PEAK STORA C-FT)	(HR)		6-HR	24-HR 9.		72-HR 9.	24.92-HR 9.					
22.	24.92		20.	MAXIMUM								
PEAK STAC (FEET)	(HR)		6-HR	MAXIMUM 24-HF 115.97	2	72-HR 115.93	24.92-HR 115.93					
117.33	24.92		117.10									
		CUMULAT	IVE AREA ⇒	1.49 SQ	МТ							

* * *	***		***	***		***			
	1	HYDROGRAPH FOR PLAN	H AT STATI 1 1, RATIO	ON DETA2B = 1.39		-			
PEAK FLOW	TIME		C IIF	MAXIMUM AVERAG 24-HR	E FLOW 72-HR	24.92-HR			
(CFS) 1.	(HR) 10.58	(CFS)	6-HR 1.	0.	0.	0.			
	(I	NCHES) AC-FT)	.003 0.	.008 1.	.008 1.	1.			
PEAK STORAGE	TIME			MAXIMUM AVERAGE	STORAGE				
(AC-FT) 43.	(HR) 24.92		6-HR 39.	24-HR 19.	72-HR 18.	24.92-HR 18.			
PEAK STAGE (FEET) 119.41	TIME (HR) 24.92		6-HR 119.04		E STAGE 72-HR 116.87	24.92-HR 116.87			
119.11		UMULATIVE	AREA =	1.49 SQ MI					
*** *** *** *	*** *** *** *	*** *** **	* *** ***	*** *** *** ***	* * * * * * * *	*** *** ***	*** *** *** **	* *** *** *	** *** *** *** *** ***
-	*****	* *							
*	r	*							
125 KK *	DETA1	*							
. .	************	**							
126 KO		CONTROL VA	RIABLES	RINT CONTROL					
	II	PRNT PLOT	0 P	LOT CONTROL YDROGRAPH PLOT :	SCALE				
		SCAL PNCH	0 PI	UNCH COMPUTED H	YDROGRAPH	NT T M			
	:	IOUT SAV1	21 S	AVE HYDROGRAPH (ON THIS U	NIT SAVED			
	I	SAV2	300 T.	AST ORDINATE PU IME INTERVAL IN	NCHED OR	SAVED			
	TI	MINT				TN 21_7 2TT 7	T DETENTION B	ASIN A1	
		COMBINE	RCP-AX, S	UBBASIN A1-1, A	ND SUBBAS	ти <u>тт</u> -с мил г			
128 HC		APH COMBIN COMP	VATION 3 N	UMBER OF HYDROG	RAPHS TO	COMBINE			

***	**	*	***	***		***			
		HYDROGRAI FOR PL	PH AT STAT AN 1, RATI	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
PEAK FLOW	TIME		~ ····	MAXIMUM AVERA 24-HR	GE FLOW 72-HR	24.92-HR			
(CFS) 73.	(HR) 11.00	(CFS)	6-HR 45.	21.	20.	20. .209			
10.		(INCHES) (AC-FT)	.113	.209 41.	.209 41.	.209			*
		CUMULATIV		3.70 SQ MI					
	**	**	***	***		***			
***		TUNDOCDA	PH AT STAT	TION DETA1 IO = 1.39					
***		FOR PL							
	ጥተለም	FOR PL		MAXIMUM AVER	AGE FLOW	or oo		•	
PEAK FLOW (CFS)	TIME (HR)	FOR PL	6-HR	24-HR	AGE FLOW 72-HR 44.	24.92-HR 44.			
PEAK FLOW	(HR) 10.67	FOR PL (CFS) (INCHES)	6-HR 109. .273	24-HR 46. .462	72-HR 44. .462	44. .462			
PEAK FLOW (CFS)	(HR) 10.67	FOR PL	6-HR 109.	24-HR 46. .462 91.	72-HR 44.	44.		·	
PEAK FLOW (CFS)	(HR) 10.67	FOR PL (CFS) (INCHES)	6-HR 109. .273 54.	24-HR 46. .462	72-HR 44. .462	44. .462		·	
PEAK FLOW (CFS)	(HR) 10.67	FOR PL (CFS) (INCHES) (AC-FT)	6-HR 109. .273 54. 7E AREA =	24-HR 46. .462 91. 3.70 SQ MI	72-HR 44. .462 91.	44. .462 91.			
PEAK FLOW (CFS) 228.	(HR) 10.67	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV	6-HR 109. .273 54. 7E AREA =	24-HR 46. .462 91. 3.70 SQ MI	72-HR 44. .462 91.	44. .462 91.	* *** *** ***	*** *** ***	*** *** *** *** *
PEAK FLOW (CFS) 228.	(HR) 10.67	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV	6-HR 109. .273 54. 7E AREA =	24-HR 46. .462 91. 3.70 SQ MI	72-HR 44. .462 91.	44. .462 91.	* *** *** ***	*** *** ***	*** *** *** *** *
PEAK FLOW (CFS) 228.	(HR) 10.67 *** *** *** **********	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV *** *** *	6-HR 109. .273 54. 7E AREA =	24-HR 46. .462 91. 3.70 SQ MI	72-HR 44. .462 91.	44. .462 91.	*** *** ***	*** *** ***	*** *** *** *** *
PEAK FLOW (CFS) 228.	(HR) 10.67 *** *** *** * * * DETA1	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV *** *** *	6-HR 109. .273 54. 7E AREA =	24-HR 46. .462 91. 3.70 SQ MI	72-HR 44. .462 91.	44. .462 91.	* *** *** ***	*** *** ***	*** *** *** *** *
PEAK FLOW (CFS) 228. *** *** *** 129 KK	(HR) 10.67 *** *** *** * * DETA1 * *********	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV *** *** *	6-HR 109. .273 54. 7E AREA =	24-HR 46. .462 91. 3.70 SQ MI	72-HR 44. .462 91.	44. .462 91.	* *** *** ***	*** *** ***	*** *** *** *** *
PEAK FLOW (CFS) 228.	(HR) 10.67 *** *** *** * DETA1 * *********** OUTPUT	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV *** *** *	6-HR 109. .273 54. 7E AREA = *** *** ** VARIABLES 3	24-HR 46. .462 91. 3.70 SQ MI * *** *** *** *	72-HR 44. .462 91.	44. .462 91.	* *** ***	*** *** ***	*** *** *** *** ***
PEAK FLOW (CFS) 228. *** *** *** 129 KK	(HR) 10.67 *** *** *** * * * * * * * * * * * * *	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV *** *** * * *** * * * * * * * * * * *	6-HR 109. .273 54. TE AREA = **** *** ** VARIABLES 3 0	24-HR 46. .462 91. 3.70 SQ MI * *** *** *** * PRINT CONTROL PLOT CONTROL PLOT CONTROL HYDROGRAPH PLOJ	72-HR 44. .462 91. ** *** **	44. .462 91.	* *** *** ***	*** *** ***	*** *** *** *** *
PEAK FLOW (CFS) 228. *** *** *** 129 KK	(HR) 10.67 *** *** *** * * DETA1 * *********** OUTPUT	FOR PL (CFS) (INCHES) (AC-FT) CUMULATIV *** *** * * * * * * * * * * * * * * *	6-HR 109. .273 54. 7E AREA = *** *** ** VARIABLES 3 0. 0.	24-HR 46. .462 91. 3.70 SQ MI * *** *** *** *	72-HR 44. .462 91. ** *** ** ** SCALE HYDROGRAJ	44. .462 91.	* *** *** ***	*** *** ***	*** *** *** *** ***

.

TIMINT .083 TIME INTERVAL IN HOURS

DETENTION BASIN A1 ASSUMES THE FOLLOWING PARAMETERS:

HYDROGRAPH ROUTING DATA STORAGE ROUTING 133 RS 1 NUMBER OF SUBREACHES NSTPS STOR TYPE OF INITIAL CONDITION ITYP INITIAL CONDITION -1.00 RSVRIC .00 WORKING R AND D COEFFICIENT Х 11.0 11.3 10.9 10.8 10.6 10.5 10.4 10.1 10.3 10.0 AREA 134 SA 116.00 112.00 110.00 106.00 108.00 104.00 102.00 100.00 96.00 98.00 ELEVATION 135 SE 2. 2. 2. 2 2. 2. 2. 2. 2. 0. DISCHARGE 136 SQ *** COMPUTED STORAGE-ELEVATION DATA 212.90 168.32 124.68 146.37 82.08 103.25 61.17 .00 20.13 40.52 112.00 116.00 108.00 110.00 STORAGE 102.00 104.00 106.00 98.00 100.00 ELEVATION 96.00 *** *** *** *** *** HYDROGRAPH AT STATION DETA1 FOR PLAN 1, RATIO = 1.00 MAXIMUM AVERAGE FLOW TIME PEAK FLOW 24.92-HR 72-HR 6-HR 24-HR (HR) (CFS) 1. 1. 1. 2. (CFS) 15.75 2. .010 .010 .005 .010 (INCHES) 2. 2. 2. 1. (AC-FT) MAXIMUM AVERAGE STORAGE 24-HR 72-HR PEAK STORAGE TIME 24.92-HR 6-HR (HR) (AC-FT) 14. 14. 34. 14. 24.92 39. MAXIMUM AVERAGE STAGE TIME PEAK STAGE 24.92-HR 24-HR 72-HR 6-HR (FEET) (HR) 97.36 97.36 97.41 99.36 24.92 99.88 3.70 SQ MI CUMULATIVE AREA = *** *** *** *** *** DETA1 HYDROGRAPH AT STATION FOR PLAN 1, RATIO = 1.39

PEAK FLOW (CFS) 2.	TIME (HR) 11.42	(CFS) (INCHES) (AC-FT)	6-HR 2. .005 1.	MAXIMUM AVEN 24-HR 1. .012 2.	RAGE FLOW 72-HR 1. .012 2.	24.92-HR 1. .012 2.
PEAK STORAGE (AC-FT) 89.	TIME (HR) 24.92		6-HR 79.	MAXIMUM AVERA 24-HR 35.	AGE STORAGE 72-HR 34.	24.92-HR 34.
PEAK STAGE (FEET) 104.63	TIME (HR) 24.92		6-HR 103.68	MAXIMUM AVE 24-HR 99.45	RAGE STAGE 72-HR 99.32	24.92-HR 99.32

CUMULATIVE AREA = 3.70 SQ MI

UI CONIROL		
TPRNT	3	PRINT CONTROL
TPLOT	0	PLOT CONTROL
OSCAL		HYDROGRAPH PLOT SCALE
TPNCH	0	PUNCH COMPUTED HYDROGRAPH
	21	SAVE HYDROGRAPH ON THIS UNIT
IOUT	21	FIRST ORDINATE PUNCHED OR SAVED
ISAV1	1	LAST ORDINATE PUNCHED OR SAVED
ISAV2	300	LAST ORDINALE FUNCTION ON DATE
TIMINT	.083	TIME INTERVAL IN HOURS

DRAINAGE ZONE B

140 BA	SUBBASIN CHARACTERISTICS	
THO DI	TAREA 1.47	SUBBASIN AREA

PRECIPITATION DATA

17 PB

18 PI

142

TAREA	1.4/	SUBBASIN

STORM	2.06	BASIN	TOTAL	PRECIPITA	TION
INCREMENTAL .00 .00	PRECIPITAT	ION PAT .00 .00		.00	.00

INCREMENTAL .00 .00 .00 .00 .00 .00 .00	PRECIPITAT .00 .00 .00 .00 .00 .00 .00	TION PATTE .00 .00 .00 .00 .00 .00 .00 .00	RN .00 .00 .00 .00 .00 .00 .00 .0	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00
.00 .00 .01 .01 .01 .00 .00 .00 .00 .00	.00 .00 .01 .01 .01 .00 .00 .00 .00 .00	.00 .00 .01 .01 .01 .00 .00 .00 .00 .00	.00 .00 .01 .01 .01 .00 .00 .00 .00 .00	.00 .00 .01 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .01 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .01 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .01 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .01 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .01 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00

922. 197. 33. 6.

929. 234. 39. 7.

141 LS	SCS LOSS RATE STRTL CRVNBR RTIMP	71.80	INITIAL ABSTRACTION CURVE NUMBER PERCENT IMPERVIOUS AREA
--------	---	-------	--

UD	SCS	DIMENSIONLESS TLAG	UNITGR	

					UNT	T HYDROGE	RAPH	
					45 END-C	F-PERTOD	ORDINATES	
				344.	520.	698.		907.
5	34.	109.	208.		483.	395.		275.
	863.	791.	705.	597.		67.		47.
	165.	135.	115.	96.	81.	11.	10.	8.
	27.	23.	19.	16.	13.	11.	10.	
	5.	4.	3.	2.	1.			
	5.						21	
TOTAL RA	* NE7/TT ==	2.06. TOTA	AL LOSS =	1.75,	TOTAL EXC	ESS =	.31	
TOTAL RA.	INCALL -	2.000/ 1011						
mante III Old	TIME			MAXIMU	M AVERAGE	FLOW		
PEAK FLOW			6-HR	24-	HR	2-HR	24.92-HR	
(CFS)	(HR)	(CFS)	25.		2.	12.	12.	
35.	11.08	(CFS)	.161		09	.309	.309	
					4.	24.	24.	
		(AC-FT)	13.	2	1.			
			e area =	1 47 9	O MT			
		COMULATIV	E ARLA =	1.4/ 5	X 111			
					***		***	
***		***	***					
					D			
		HYDROGRA	PH AT STAT	ION	в			
		FOR PL	AN 1, RATI	0 = 1.00				
							51	
TOTAL RA	TNFALL =	2.06, TOT	AL LOSS =	1.75,	TOTAL EX	CESS =	.51	
IOIND IN.								
PEAK FLOW	TME				IM AVERAGE	FLOW	a	
	(HR)		6-HR		1111	72-HR	24.92-HR	
(CFS)		(CFS)	25.	1		12.	12.	
35.	11.08	(INCHES)	.161		309	.309	.309	
			13.			24.	24.	
		(AC-FT)	10.					
			/E AREA =	1 47 9	TM OS			
		COMOLATIV	E AREA -	T • 4) •	× ···-			
			***		* * *		***	
***		***	***					
				17.017	p			
		HYDROGR/	APH AT STAT		. Б О			
		FOR PI	LAN 1, RATI	10 = 1.3	9			
					mompt E3	CECC -	72	
TOTAL R	AINFALL =	2.86, TO	FAL LOSS =	2.14	, TOTAL EZ	(CE99 -		
PEAK FLOW	TIME				UM AVERAGI		04 00_UD	
(CFS)	(HR)		6-HR		1111	72-HR	24.92-HR	
123.	10.75	(CFS)	65.		28.	27.	27.	
123.	10.12	(INCHES)	.414		711	.711	.711	
		(AC-FT)	32.		56.	56.	56.	
		(MC-E1)	52.					

*** *** ***	*** *** *:	** *** *** **	* *** ***	*** *** **	* *** *;	** *** **	* *** *** **	* *** ***	*** *** **	* *** ***	*** *** *:	k* *** ***	
	*******	****											
	*	*											
- KK	* DE'	rb * *											
	********	****											
144 KO	OUTP	UT CONTROL VA IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT	3 PF 0 P1 0. H3 0 PC 21 S7 1 F 300 L2 .083 T	RINT CONTROL OT CONTROL (DROGRAPH E INCH COMPUT AVE HYDROGR IRST ORDINA AST ORDINA IME INTERVA	LOT SCA ED HYDR APH ON ' TE PUNC E PUNCH L IN HO	OGRAPH THIS UNIT HED OR SA ED OR SAV URS	ED ED						
		ASSUMES	THE FOLLO	I TERMINUS NING PARAME	OF DRAI TERS:	NAGE ZONE	B, SOUTH O	F MAGNOLIA					
	HYDROG	RAPH ROUTING	DATA										
147 RS	STOR	AGE ROUTING NSTPS ITYP RSVRIC X	STOR T	UMBER OF SU YPE OF INI NITIAL CONI RKING R ANI	TAL CON	DITION					:		
148 SA		AREA	5.5	5.6	5.8	5.9	6.0	6.1	6.2	6.3	6.5	6.7	
149 SE	ELEV	/ATION	90.00	92.00	94.00	96.00	98.00	100.00	102.00	104.00	106.00	110.00	
150 SQ	DISC	CHARGE	0.	1.	1.	1.	1.	1.	1.	1.	1.	1.	
130 30	Dio												

				COMP	UTED STO	ORAGE-ELE	VATION DATA			05 04	122.16		
:	STORAGE ELEVATION	.00 90.00	11.14 92.00	22.52 94.00	34.14 96.00	46.0 98.0		70.44 102.00	83.02 104.00	95.84 106.00	110.00		
***		***	***		***		***						
		HYDROGRA FOR PI	APH AT STAT LAN 1, RATI	DE = 1.00	TB								
PEAK FLOW (CFS) 1.	TIME (HR) 15.50	(CFS) (INCHES) (AC-FT)	6-HR 1. .003 0.	MAXIMUM 24-HF 0. .006	i i	FLOW 72-HR 0. .006 1.	24.92-HR 0. .006 1.						
PEAK STORA (AC-FT) 24.	GE TIME (HR) 24.92		6-HR 20.	MAXIMUM A 24-HF 8.	2	STORAGE 72-HR 8.	24.92-HR 8.						
PEAK STAG (FEET) 94.20	E TIME (HR) 24.92		6-HR 93.61	MAXIMUM 24-HH 91.50	۶.	STAGE 72-HR 91.44	24.92-HR 91.44						
		CUMULATI	VE AREA =	1.47 SQ	MI								
***		***	***		***		***						
***		HYDROGR		TION DI IO = 1.39	ETB								
PEAK FLOU (CFS) 1.	(HR)	(CFS) (INCHES) (AC-FT)	6-HR 1. .003 0.	MAXIMUM 24-H 0 .00 1	R • 7	E FLOW 72-HR 0. .007 1.	24.92-HR 0. .007 1.						
PEAK STOR (AC-FT) 55.	(HR)		6-HR 49.	MAXIMUM 24-H 21	R	STORAGE 72-HR 21.	24.92-HR 21.						
PEAK STA FEET) 99.50	(HR)		6-HR 98.43	MAXIMUM 24-H 93.7	R	E STAGE 72-HR 93.61	24.92-HR 93.61						
		CUMULATI	IVE AREA =	1.47 SQ	MI								

17 PB

156 UD

152 KO OUTPUT CONTROL VARIABLES IPRNT 3 PRINT CONTROL IPLOT 0 QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 300 LAST ORDINATE PUNCHED OR SAVED TIMINT .083 TIME INTERVAL IN HOURS

DRAINAGE ZONE C

SUBBASIN RUNOFF DATA

154	RΔ	SUBBASIN CHARACTERISTIC	S	
104	1021	TAREA .39	SUBBASIN	AREA

PRECIPITATION DATA

STORM 2.06 BASIN TOTAL PRECIPITATION

18 PI	INCREMENTAL		ATION PATTE	ERN	00	00	.00	.00	.00	.00
10 11	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00		.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.01	.01
	.00	.00	.01	.01	.01	.01	.01		.01	.04
	.01	.01	.01	.01	.04	.04	.04	.04	.01	.01
	.01	.01	.01	.01	.01	.01	.01	.01	.00	.00
	.01	.01	.01	.01	.01	.01	.01	.01	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
+ · · · · · · · · · · · · · · · · · · ·	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00		.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
		.00	.00	.00	.00	.00	.00	.00	.00	
	-00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00		.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00		
	.00	.00	.00	.00						

RTIMP .00 PERCENT IMPERVIOUS AREA	155 LS	SCS LOSS RATE STRTL CRVNBR RTIMP	70.40	INITIAL ABSTRACTION CURVE NUMBER PERCENT IMPERVIOUS AREA
-----------------------------------	--------	---	-------	--

SCS	DIMENSIONLESS	UNITGR	APH	
	TLAG	.35		

TOTAL RA	54. 80. 3. INFALL =	169. 56. 2. 2.06, TOTA	348. 40. 1. L LOSS =	464. 48	0. 423 0. 14	D ORDINATES	221. 7.	156. 5.	113. 4.
PEAK FLOW (CFS) 9.	TIME (HR) 10.67	(CFS) (INCHES) (AC-FT)	6-HR 6. .141 3.	MAXIMUM AVEF 24-HR 3. .274 6.	AGE FLOW 72-HR 3. .274 6.	24.92-HR 3. .274 6.			
***		CUMULATIVE	AREA =	.39 SQ MI	÷	***			
		HYDROGRAP FOR PLA	H AT STAT: N 1, RATIO) = 1.00		07			
TOTAL R	AINFALL =	2.06, TOTA	L LOSS =	1.79, TOTA	L EXCESS =	.27			
PEAK FLOW (CFS) 9.	TIME (HR) 10.67	(CFS)	6-HR 6.	MAXIMUM AVE 24-HR 3.	RAGE FLOW 72-HR 3.	24.92-НR З.			

		(AC-FT)	3.	6.		6.	6.						
		CUMULATIV	E AREA =	.39 SQ N	1I								
***		* * *	***		***	**	**						
		HYDROGRA FOR PL	PH AT STAT AN 1, RATI	ION O = 1.39	с								
TAL RA	INFALL =	2.86, TOT	AL LOSS =	2.20, T	OTAL EXCE	SS ≠ .	.65						
PEAK FLOW	TIME (HR)		6-HR	MAXIMUM 2 24-HR		-HR 24	4.92-HR						
(CFS) 38.	10.25	(CFS) (INCHES)	16. .382	7. .655 14.		7. 655 14.	7. .655 .14.						
		(AC-FT) CUMULATIV	8.	.39 SQ 1									۰.
		CONCLETE											
				- +++ +++ +	** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** ***	*** *** **	* *** ***	ŀ
*** *** ***	*** *** **	* *** *** *	*** *** ***										
	********	****											
157 KK	* DE1	rc *				• •							
	* *********	*											
158 KO	OUTPU	JT CONTROL '	VARIABLES	PRINT CONTR	ROL								
		IPRNT IPLOT	0	PLOT CONTRO HYDROGRAPH	DL	LE							
		QSCAL IPNCH	0	PUNCH COMPUSAVE HYDROC	JTED HYDRO	JGRAPH							
		IOUT ISAV1	1	FIRST ORDIN	JATE PUNCI	HED OR SAV	/ED						
		ISAV2 TIMINT	.083	TIME INTERV	VAL IN HO	URS							
		DETENT ASSUME	ION BASIN S THE FOLL	AT TERMINUS OWING PARAN	S OF DRAID	NAGE ZONE	C, ADJACEN	T ARENA CAI	IAL				
	HYDROG	RAPH ROUTIN	G DATA										
161 RS	STOR	AGE ROUTING	1	NUMBER OF	SUBREACHE	S							
		ITYP RSVRIC X	STOR	TYPE OF IN INITIAL CO WORKING R A	ITIAL CON NDITION	DITION							
162 SA		AREA	.8	.9	1.0	1.1	1.3	1.4	1.5	1.7	1.8	1.9	
163 SE	ELEV	VATION	100.00	102.00	104.00	106.00	108.00	110.00	112.00	114.00	116.00	118.00	
164 SQ	DISC	HARGE	0.	1.	1.	1.	1.	1.	1.	1.	1.	1.	

				COM	IPUTED STO)RAGE-ELEV	TATION DATA						
I	STORAGE ELEVATION	.00 100.00	1.63 102.00	3.52 104.00	5.66 106.00				114.00	20.29 116.00	24.00 118.00		
***		***	***		***		***						
***		UVDROG	RAPH AT ST PLAN 1, RA	ATION I TIO = 1.00	DETC								
PEAK FLOW	TIME				M AVERAGE	FLOW 72-HR	24.92-HR						
(CFS) 1.	(HR) 13.33	(CFS)	6-HR 1.		1.	1.	1. .053						
		(INCHES) (AC-FT)				.053 1.	1.						
PEAK STORA (AC-FT) 5.	GE TIME (HR) 24.50		6-HF 4.	24-		STORAGE 72-HR 2.	24.92-HR 2.						
PEAK STAG (FEET)			6-HF	24-		STAGE 72-HR 01.90	24.92-HR 101.90						
105.03	24.58	OTBATT N	104.52 TIVE AREA =										
		COMODAL											
***		***	***		***		***						
		HYDRO FOR	GRAPH AT ST PLAN 1, RA	TATION ATIO = 1.39	DETC								

(CFS) 1.	(HR) 10.58	(CFS) (INCHES) (AC-FT)	6-HR 1. .024 0.	24-HR 1. .058 1.	72-HR 1. .058 1.	24.92-HR 1. .058 1.					
PEAK STORAGE (AC-FT) 12.	TIME (HR) 24.67		6-HR 11.	MAXIMUM AVER 24-HR 5.	AGE STORAGE 72-HR 5.	24.92-HR 5.					
PF STAGE T) 111.17	TIME (HR) 24.67		6-HR 110.31	MAXIMUM AVE 24-HR 104.89	RAGE STAGE 72-HR 104.71	24.92-HR 104.71	·				
		CUMULATI	VE AREA =	.39 SQ MI							
*** *** ***			*** *** **	* *** *** ***	*** *** ***	*** *** ***	*** *** **	* *** *** *	*** *** ***	* *** *** ;	*** *** ***
	*******	*****									
165 KK	*	D *									
100 100	*	*									
	*******	*****									
166 KO	OUT	PUT CONTROL IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT	3 0 0. 0 21 1 300	PRINT CONTROL PLOT CONTROL HYDROGRAPH PLC PUNCH COMPUTEI SAVE HYDROGRAF FIRST ORDINATE LAST ORDINATE TIME INTERVAL) HYDROGRAPH 2H ON THIS UN 2 PUNCHED OR 2 PUNCHED OR 3	SAVED					
			GE ZONE D								
	SUBBA	ASIN RUNOFF I									
168 BA	SUI	BASIN CHARAC TAREA	CTERISTICS	SUBBASIN AREA							
	PRI	ECIPITATION I	DATA								
17 PB		STORM	2.06	BASIN TOTAL P	RECIPITATION						
18 PI		INCREMENTAL 1 .00 .00 .00 .00 .00	PRECIPITAT .00 .00 .00 .00 .00	ION PATTERN .00 .0 .00 .0 .00 .0 .00 .0 .00 .0 .00 .0	0 .00 0 .00 0 .00 0 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	

.00			00	.00	.00	.00	.00	.00	•••
.00	.00	.00	.00		.00	.00	.00	.00	.00
.00	.00	.00	.00	.00		.00	.00	.00	.00
.00	.00	.00	.00	.00	.00		.00	.00	.00
.00	.00	.00	.00	.00	.00	.00		.00	.00
.00	.00	.00	.00	.00	.00	.00	.00		.01
	.00	.01	.01	.01	.01	.01	.01	.01	.04
.00		.01	.01	.04	.04	.04	.04	.04	
.01	.01	.01	.01	.01	.01	.01	.01	.01	.01
.01	.01		.01	.01	.01	.01	.01	.00	.00
.01	.01	.01		.00	.00	.00	.00	.00	.00
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
.00	.00	.00	.00		.00	.00	.00	.00	.00
.00	.00	.00	.00	.00		.00	.00	.00	.00
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
.00	.00	.00	.00	.00	.00		.00	.00	.00
.00	.00	.00	.00	.00	.00	.00		.00	.00
.00	.00	.00	.00	.00	.00	.00	.00		.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
.00		.00	.00	.00	.00	.00	.00	.00	
.00	.00		.00	.00	.00	.00	.00	.00	.00
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
.00	.00	.00		.00	.00	.00	.00	.00	.00
.00	.00	.00	.00		.00	.00	.00	.00	.00
.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
.00	.00	.00	.00	-00		.00	.00		
.00	.00	.00	.00	.00	.00	.00	.00		
.00									

169 LS	SCS LOSS RATE STRTL CRVNBR RTIMP	79.70	INITIAL ABSTRACTION CURVE NUMBER PERCENT IMPERVIOUS AREA
--------	---	-------	--

170 UD SCS DIMENSIONLESS UNITGRAPH TLAG .73 LAG

15. 407. 81. 14.	50. 375. 67. 12.	95. 337. 57. 10.	157. 289. 47. 8.	46 END-OF 237. 235. 40. 7.	320. 191. 33. 6.	PH RDINATES 383. 160. 28. 5.	421. 134. 23. 4.	433. 113. 20. 4.	431. 96. 16. 3.
3.	2.	2.	1.	1.	0.				

PEAK FLOW (CFS) 52.	TIME (HR) 10.75	(CFS) (INCHES) (AC-FT)	6-HR 26. .347 13.	MAXIMUM AV 24-HR 11. .582 22.	72-	LOW -HR 10. 582 22.	24.92-HR 10. .582 22.					
		CUMULATIVE	AREA =	.69 SQ MI								
**		***	***	*	***		* * *					· · ·
		HYDROGRAF FOR PLA	H AT STAT	ION E O = 1.00)							
TOTAL RA	INFALL =	2.06, TOTA		1.47, TOI	TAL EXCE	SS =	.59					
PEAK FLOW (CFS) 52.	TIME (HR) 10.75	(CFS) (INCHES) (AC-FT)	6-HR 26. .347 13.	MAXIMUM AV 24-HR 11. .582 22.	72	LOW -HR 10. 582 22.	24.92-HR 10. .582 22.					
		CUMULATIVE	AREA =	.69 SQ MI	I.							
***		***	***	1	* * *		***					
		HYDROGRAL FOR PL	PH AT STAT	ION	D							
TOTAL RA	AINFALL =	2.86, TOT	AL LOSS =	1.73, TO	TAL EXCE	ss =	1.13					
PEAK FLOW (CFS) 117.	TIME (HR) 10.67	(CFS) (INCHES) (AC-FT)	6-HR 52. .701 26.	MAXIMUM A 24-HR 21. 1.121 41.	72	LOW -HR 20. 121 41.	24.92-HR 20. 1.121 41.					
		CUMULATIV	E AREA =	.69 SQ M	I							
										1	+++ +++ +	** *** ***
*** *** ***	*** *** *	** *** *** *	** *** ***	* *** *** **	* *** **	*****	** *** *** **	* *** ***	*** *** **	* *** ***		
	********	* * * * *										
K	* DE * ***	TD * *										
172 KO	OUTP	UT CONTROL V IPRNT IPLOT QSCAL DETENTI ASSUMES	3 0 0. ON BASIN	PRINT CONTRO PLOT CONTROI HYDROGRAPH F AT TERMINUS OWING PARAME	LOT SCA	LE NAGE ZON	E D, NORTH O	F VINEWOOD,	B STREET			
	HYDROG	RAPH ROUTING) DATA									
175 RS	STOF	AGE ROUTING NSTPS ITYP RSVRIC X	STOR	NUMBER OF SU TYPE OF INIT INITIAL CON WORKING R AN	FIAL CON DITION	DITION						
176 SA		AREA	2.8	3.0	3.2	3.4	3.6	3.8	4.1	4.3	4.5	4.7
177 SE	ELEV	VATION	95.00	97.00	99.00	101.00	103.00	105.00	107.00	109.00	111.00	113.00
178 SQ	DISC	CHARGE	0.	1.	1.	1.	1.	1.	1.	1.	1.	1.
						***	EVATION DATA					
		00	5.72	11.88	18.48	25.	51 32.99	40.91	49.27	58.07	67.31	
:	STORAGE ELEVATION	.00 95.00	97.00	99.00	101.00	103.		107.00	109.00	111.00	113.00	
***		***	***		***		***					
		HYDROGF FOR E	APH AT STA LAN 1, RA	ATION DE TIO = 1.00	TD							
∡ FLOW (CFS) 1.	TIME (HR) 11.75	(CFS)	6-HR 1.	0.	۲ '	72-HR 0.	24.92-HR 0.					
1.		(INCHES) (AC-FT)	.007 0.	.016	•	.016 1.	.016 1.					
PEAK STORA	GE TIME			MAXIMUM F	AVERAGE	STORAGE						

21.	24.92		19.	8.	8.	8.						
PEAK STAGE (FEET) 101.71	TIME (HR) 24.92		6-HR 101.05	MAXIMUM AVEF 24-HR 97.76	RAGE STAGE 72-HR 97.66	24.92-HR 97.66						
101.71		CUMULATIVE	AREA =	.69 SQ MI								
**	**	* *	***	***	r	* * *						
		HYDROGRAP FOR PLA	H AT STAT	TION DETD IO = 1.39								
PEAK FLOW	TIME		C HD	MAXIMUM AVEN 24-HR	RAGE FLOW 72-HR	24.92-HR						
(CFS) 1.	(HR) 10.67	(CFS) (INCHES)	6-HR 1. .007	0. .016	0. .016	0. .016						
		(AC-FT)	0.	1. MAXIMUM AVER	1.	1.						
PEAK STORAGE (AC-FT) 41.	; TIME (HR) 24.92		6-HR 37.	MAXIMUM AVER 24-HR 17.	72-HR 17.	24.92-HR 17.				•		
41. PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE 72-HR	24.92-HR						
(FEET) 106.99	(HR) 24.92	·	6-HR 106.01	24-HR 100.27	100.07	100.07						
		CUMULATIV	E AREA =	.69 SQ MI								
										* *** ***	*** ***	***
*** *** ***	*** *** ***	*** *** *	** *** **	* *** *** ***	*** *** ***	*** *** ***	* *** *** **	** *** ***	*** *** **			
	********	***										
179 KK	* * E	* ? *										
	* *********	*										
180 KO	OUTPUI	r CONTROL V IPRNT	· 3	PRINT CONTROL								
		IPLOT QSCAL	· 0.	PLOT CONTROL HYDROGRAPH PLO PUNCH COMPUTEI	T SCALE							
		IPNCH IOUT	21	SAVE HYDROGRAM	PH ON THIS UN	SAVED						
		ISAV1 ISAV2 TIMINT	300 .083	LAST ORDINATE TIME INTERVAL	PUNCHED OR	SAVED						
N			E ZONE F									
	SUBBASI	N RUNOFF DA	ATA									
182 BA	SUBBA	SIN CHARACI TAREA	TERISTICS .65	SUBBASIN AREA								
	PRECI	PITATION DA										
17 PB		STORM		BASIN TOTAL P	RECIPITATION							
18 PI	INC	.00	.00	ION PATTERN .00 .0 .00 .0		.00 .00	.00	.00	.00	.00		
		.00	.00	.00 .0	0.00	.00	.00	.00 .00	.00	.00		
		.00	.00 .00 .00	.00 .00	0.00	.00 .00	.00	.00	.00	.00		
		.00 .00	.00	.00 .0	0.00	.00	.00 .00	.00 .00	.00 .00	.00 .00		
		.00 .00	.00 .00	.00 .0	.00	.00	.00	.00 .00	.00 .00	.00 .00		
		.00	.00	.00 .0 .01 .0	.01	.01	.01	.01 .04	.01 .04	.01		
		.01	.01 .01	.01 .0 .01 .0	.01	.01	.01	.01	.01	.01		
		.01	.01 .00	.01 .0	.00	.01	.01 .00	.00	.00	.00		
		.00	.00	.00 .00	.00	.00 .00	.00	.00	.00	.00		
		.00	.00	.00 .0		.00 .00	.00	.00 .00	.00	.00		
		.00	.00	.00 .0	.00	.00	.00	.00	.00	.00 .00		
		.00 .00	.00 .00	.00 .0	.00	.00	.00	.00	.00 .00	.00 .00		
		.00	.00	.00 .0	00.00 00.00	.00	.00	.00	.00	.00		
				00 (.00	.00	.00					
		.00	.00		.00	.00	.00	.00	.00	.00		
		.00 .00 .00 .00	.00 .00 .00 .00	.00 .0		.00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00		

183 LS

SCS LOSS RATE STRTL CRVNBR

.76 INITIAL ABSTRACTION 72.50 CURVE NUMBER

184 UD	SCS D	IMENSIONLESS TLAG	S UNITGRAPI	H AG								

					UNIT	HYDROGRAPH						
-	39. 270. 22.	115. 209. 17.	236. 162. 14.	395. 129. 11.	32 END-OF- 517. 101. 8.	PERIOD ORI 573. 78. 6.	573. 60. 5.	524. 47. 4.	457. 37. 3.	366. 28. 2.		
	1.	0. 2.06, TOTA	= 2201 IA	1.73. T	OTAL EXCES	s = .3	3					
	AINFALL =	2.06, 101	AL 1000 -		AVERAGE FL							
PEAK FLOW (CFS) 20.	TIME (HR) 10.67	(CFS) (INCHES)	6-HR 12. .177	24-HR 6. .332	.3	HR 24. 6. 32	92-HR 6. .332 11.					
		(AC-FT)	6.	11. .65 SQ		1.						
		CUMULATIV	L ARLA -	.05 52								
***		***	***		***	**:	ĸ					
		FOR PL	PH AT STAT AN 1, RATI	0 = 1.00	F .							
TOTAL R	AINFALL =	2.06, TOT	AL LOSS =		TOTAL EXCES		33					
PEAK FLOW (CFS) 20.	TIME (HR) 10.67	(CFS) (INCHES) (AC-FT)	6-HR 12. .177 6.	MAXIMUM 24-HI 6 .332 11	2 .3		.92-HR 6. .332 11.					
		CUMULATIV	/E AREA =	.65 SQ	MI							
***		***	***		***	**	* .					
		HYDROGRA FOR PI	APH AT STAT	rion 10 = 1.39	F							
TOTAL R	AINFALL =	2.86, TO	TAL LOSS =	2.11,	TOTAL EXCE	SS = •	75					
PEAK FLOW	TIME		6-HR	MAXIMUM 24-H	AVERAGE F	LOW -HR 24	.92-HR					
(CFS) 69.	(HR) 10.50	(CFS) (INCHES) (AC-FT)	31. .444 15.	13 .74 26		13. 747 26.	13. .747 26.	•				
			VE AREA =	.65 SQ	i MI							
		** *** ***	*** *** **	* *** ***	*** *** **	* *** ***	*** *** *	*** *** ***	*** *** **	*** ***	*** *** *	** *** ***
*** *** ***	* *** *** *											
	********	* * * * *										
185 KK	* DE * ********	TF * *										
186 KO	OUTE	PUT CONTROL IPRNT IPLOT QSCAL DETENI ASSUME	3	AT TERMINU	ROL H PLOT SCAI JS OF DRAIN	le Iage zone	F, SOUTH (OF OLIVE AV	ENUE			
	HYDRO	GRAPH ROUTIN	IG DATA									
189 RS	STO	RAGE ROUTING NSTPS ITYP RSVRIC X	1 STOR -1 00	TYPE OF I	SUBREACHES NITIAL CON ONDITION AND D COEF	DITION						
190 SA		AREA	2.0	2.2	2.4	2.5	2.7	2.9	3.1	3.3	3.4	3.6
191 SE	ELE	VATION	115.00	117.00	119.00	121.00	123.00	125.00	127.00	129.00	131.00	132.00
192 SQ	DIS	CHARGE	0.	1.	1.	1.	1.	1.	1.	1.	1.	1.

				СС	MPUTED STO	RAGE-ELEVA	TION DATA	A				
	STORAGE ELEVATION	.00 115.00	4.18 117.00	8.72 119.00			24.49 125.00	30.47) 127.00			47.04 132.00	

* * *		***	* * *	***	r	***
			H AT STAT N 1, RATI	TION DETF CO = 1.00		
PEAK FLOW	TIME			MAXIMUM AVER		24.92-HR
(CFS)	(HR)		6-HR	24-HR 0.	72-HR 0.	24.92-HK 0.
1.	13.83	(CFS)	0.		.016	.016
		(INCHES)	.007	.016	.010	1.
		(AC-FT)	0.	τ.	1.	
PEAK STORAGE	TIME			MAXIMUM AVER	AGE STORAGE	
(AC-FT)	(HR)		6-HR	24-HR	72-HR	24.92-HR
(AC-FI) 11.			10.	4.	4.	4.
***	21.50					
PEAK STAGE	TIME			MAXIMUM AVE	RAGE STAGE	
	(HR)			24-HR	72-HR	24,92-HR
119.89	24.92		119.32	116.86	116.79	116.79
		CUMULATIVE	E AREA =	.65 SQ MI		
***		***	***	**:	*	***
***		HYDROGRAI		TION DETF	*	***
		HYDROGRAI	PH AT STAT	TION DETF IO = 1.39		***
PEAK FLOW	TIME	HYDROGRAI	PH AT STAT N 1, RATI	TION DETF IO = 1.39 MAXIMUM AVE		*** 24.92-HR
PEAK FLOW (CFS)	(HR)	HYDROGRAI FOR PLA	2H AT STAI WN 1, RATI 6-HR	TION DETF IO = 1.39 MAXIMUM AVE 24-HR	RAGE FLOW	
PEAK FLOW		HYDROGRAI FOR PLA (CFS)	PH AT STAT AN 1, RATI 6-HR 0.	TION DETF IO = 1.39 MAXIMUM AVE 24-HR 0.	RAGE FLOW 72-HR	24.92-HR
PEAK FLOW (CFS)	(HR)	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAI WN 1, RATI 6-HR	TION DETF IO = 1.39 MAXIMUM AVE 24-HR 0.	RAGE FLOW 72-HR 0.	24.92-HR 0.
PEAK FLOW (CFS)	(HR)	HYDROGRAI FOR PLA (CFS)	2H AT STAT AN 1, RATI 6-HR 0. .007 0.	TION DETF IO = 1.39 MAXIMUM AVEL 24-HR 0. .017 1.	RAGE FLOW 72-HR 0. .017 1.	24.92-HR 0. .017
PEAK FLOW (CFS) 1.	(HR) 10.83	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAT AN 1, RATI 6-HR 0. .007 0.	TION DETF IO = 1.39 MAXIMUM AVEI 24-HR 0. .017 1. MAXIMUM AVER	RAGE FLOW 72-HR 0. .017 1. AGE STORAGE	24.92-HR 0. .017 1.
PEAK FLOW (CFS) 1. PEAK STORAGE	(HR) 10.83 TIME	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAT AN 1, RATI 6-HR 0. .007 0.	TION DETF IO = 1.39 MAXIMUM AVEI 24-HR 0. .017 1. MAXIMUM AVER 24-HR	RAGE FLOW 72-HR 0. .017 1. AGE STORAGE 72-HR	24.92-HR 0. .017 1. 24.92-HR
PEAK FLOW (CFS) 1. PEAK STORAGE (AC-FT)	(HR) 10.83 TIME	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAI AN 1, RATI 6-HR 0. .007 0.	TION DETF IO = 1.39 MAXIMUM AVEI 24-HR 0. .017 1. MAXIMUM AVER 24-HR	RAGE FLOW 72-HR 0. .017 1. AGE STORAGE	24.92-HR 0. .017 1.
PEAK FLOW (CFS) 1. PEAK STORAGE (AC-FT)	(HR) 10.83 TIME (HR)	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAN AN 1, RATI 6-HR 0. .007 0. 6-HR	TION DETF IO = 1.39 MAXIMUM AVEI 24-HR 0. .017 1. MAXIMUM AVER 24-HR 10.	RAGE FLOW 72-HR 0. 017 1. AGE STORAGE 72-HR 10.	24.92-HR 0. .017 1. 24.92-HR
PEAK FLOW (CFS) 1. PEAK STOBAGE (AC-FT) 25. PEAK STAGE	(HR) 10.83 TIME (HR) 24.92 TIME	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAN AN 1, RATI 6-HR 0. .007 0. 6-HR 23.	TION DETF IO = 1.39 MAXIMUM AVEI 24-HR 0. .017 1. MAXIMUM AVER 24-HR 10. MAXIMUM AVE	RAGE FLOW 72-HR 0. .017 1. AGE STORAGE 72-HR 10. RAGE STAGE	24.92-HR 0. .017 1. 24.92-HR 10.
PEAK FLOW (CFS) 1. PEAK STORAGE (AC-FT) 25. PEAK STAGE (FEET)	(HR) 10.83 TIME (HR) 24.92 TIME (HR)	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAT AN 1, RATI 6-HR 0. .007 0. 6-HR 23. 6-HR	TION DETF IO = 1.39 MAXIMUM AVEI 24-HR 0. .017 1. MAXIMUM AVER 24-HR 10. MAXIMUM AVE 24-HR	RAGE FLOW 72-HR 0. .017 1. AGE STORAGE 72-HR 10. RAGE STAGE 72-HR	24.92-HR 0. .017 1. 24.92-HR 10. 24.92-HR
PEAK FLOW (CFS) 1. PEAK STORAGE (AC-FT) 25. PEAK STAGE (FEET)	(HR) 10.83 TIME (HR) 24.92 TIME	HYDROGRAI FOR PLI (CFS) (INCHES)	2H AT STAN AN 1, RATI 6-HR 0. .007 0. 6-HR 23.	TION DETF IO = 1.39 MAXIMUM AVEI 24-HR 0. .017 1. MAXIMUM AVER 24-HR 10. MAXIMUM AVE 24-HR	RAGE FLOW 72-HR 0. .017 1. AGE STORAGE 72-HR 10. RAGE STAGE 72-HR	24.92-HR 0. .017 1. 24.92-HR 10.

***** G * 193 KK ***

*** *** *** *** *** ***

194 KO	OUTPUT CONTROL	VARIABLES	
194 KO	IPRNT		PRINT CONTROL
	IPLOT	. 0	PLOT CONTROL
	OSCAL		HYDROGRAPH PLOT SCALE
	IPNCH	0	PUNCH COMPUTED HYDROGRAPH
	IOUT		SAVE HYDROGRAPH ON THIS UNIT
	ISAV1		FIRST ORDINATE PUNCHED OR SAVED
	ISAV2	300	LAST ORDINATE PUNCHED OR SAVED
	TIMINT	.083	TIME INTERVAL IN HOURS

DRAINAGE ZONE G

SUBBASIN RUNOFF DATA

SUBBASIN CHARACTERISTICS TAREA .32 SUBBASIN AREA 196 BA

> PRECIPITATION DATA STORM

2.06 BASIN TOTAL PRECIPITATION

17 PB	STORM	2.06	BASIN TO	TAL PRECI	PITATION					
18 PI	INCREMENTAL .00 .00 .00 .00 .00 .00 .00 .0	PRECIPITAD .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	TION PATTE .00 .00 .00 .00 .00 .00 .00 .0	ERN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .04 .01 .00 .00 .00 .00 .00 .00

.

*** ***

		.00 .00 .00 .00 .00 .00 .00 .00		.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	
1. 3		OSS RATE STRTL CRVNBR RTIMP	.47 1 81.00 0	NITIAL AB URVE NUMB ERCENT IM	STRACTI ER							
198 UD	SCS D	IMENSIONLE TLAG	SS UNITGRAN .53 I	РН "AG								

	17. 152. 14. 1.	50. 116. 11. 1.	101. 91. 9. 1.	171. 72. 7. 0.	U 34 END 232. 58. 5.	265. 46.	O ORDINATES 272. 36.	259. 28. 3.	232. 22. 2.	197. 18. 2.		
TOTAL RAI		2.06, T	OTAL LOSS =	1.42,	TOTAL E	XCESS =	.64					
PEAK FLOW (CFS) 32.	TIME (HR) 10.42	(CFS) (INCHES) (AC-FT)	6-HR 14. .392 7.	MAXIMUM 24-F 6 .64 11	IR 5. 11	E FLOW 72-HR 5. .641 11.	24.92-HR 5. .641 11.					
		CUMULAT	IVE AREA =	.32 SQ	MI							
***		***	***		***		***					
		HYDROG FOR	RAPH AT STA PLAN 1, RAT	TION IO = 1.00	G							
TOTAL RA	INFALL =	2.06, T	OTAL LOSS =	1.42,	TOTAL E	EXCESS =	.64					
PEAK FLOW (CFS) 32.	TIME (HR) 10.42	(CFS) (INCHES) (AC-FT)	6-HR 14. .392 7.	MAXIMUN 24-1 .64	6. 41	GE FLOW 72-HR 5. .641 11.	24.92-HR 5. .641 11.					
		CUMULAT	IVE AREA =	.32 S	Q MI							
***		***	* * *		***		***					
		HYDROG	RAPH AT STA PLAN 1, RAI	TION	G							
	TNFALL =		PLAN I, RAI			EXCESS =	1.21					
PEAK FLOW (CFS) 70.	TIME (HR) 10.42	(CFS) (INCHES)	6-HR 26.	MAXIMU 24-	0.	GE FLOW 72-HR 10. 1.204	24.92-HR 10. 1.204					
		(AC-FT)		2	1.	21.	21.					
		CUMULAT	IVE AREA =	.32 S	Q MI							
*** *** ***	*** *** *	*** *** **	* *** *** *:	** *** ***	*** **	* *** ***	*** *** ***	*** *** **	* *** ***	*** *** *:	** *** ***	*** *** ***
	*******	*****										
199 KK	*	* ETG *										
	* *******	*										
200 КО	OUTI	IPRNT IPLOT QSCAL DETE	Ó	PRINT CON PLOT CON HYDROGRAN	TROL PH PLOT NUS OF E	DRAINAGE Z	ONE G, ADJAC	ENT HWY 99				
	HYDRO	GRAPH ROUT	ING DATA									
RS	STO	RAGE ROUTI NSTPS ITYP RSVRIC X	1 STOR -1.00	INTTIAL (INITIAL	CONDITION						
204 SA		AREA	1.0	1.1	1.3	3 1.	4 1.6	1.7	1.9	2.0	2.2	2.3

205 SE	ELEVATIC)N 1	15.00	117.00	119.00	121.00	123.00	125.00	127.00	129.00	131.00	133.00
AAC 00	DISCHAR	F.	ο.	1.	1.	1.	1.	1.	1.	1.	1.	1.
206 SQ	DIOCHERK					***						
				со	MPUTED ST		ATION DATA					
- S'	TORAGE	.00	2.15	4.58	7.32	10.34	13.66	17.27 127.00	21.18 129.00		29.87 133.00	
ELE'	VATION :	115.00	117.00	119.00	121.00	123.00	120.00					
***	**		***		***		***					
		HYDROGRA FOR PI	APH AT ST. LAN 1, RA	FIO = 1.00								
PEAK FLOW (CFS)	TIME (HR)		6-HR	24-		FLOW 72-HR 0.	24.92-HR 0.					
1.	10.92	(CFS) INCHES) (AC-FT)	1. .014 0.	.(0.)35 1.	.035 1.	.035 1.					
PEAK STORAGE	TIME	(AC-FI)		MAXIMU	AVERAGE	STORAGE	24.92-HR					
(AC-FT) 10.	(HR) 24.92		6-НR 9.			72-HR 4.	24.92 m 4.	t i se est				
PEAK STAGE (FEET)	TIME (HR)		6-HF	24		72-HR	24.92-HR 118.40					
123.04	24.92		122.39 VE AREA =			118.40	110.40					
					***		***					
***	**		*** APH AT ST		DETG							
		FOR F	PLAN 1, RA	ATIO = 1.3	9							
PEAK FLOW (CFS)	TIME (HR)	(CFS)	6-HI 0	R 24	UM AVERAG -HR 0.	72-HR 0.	24.92-HR 0.					
1.	10.25	(INCHES) (AC-FT)	.01	1 -	036	.036 1.	.036 1.					
PEAK STORAGE			6-H		M AVERAGE -HR	STORAGE 72-HR	24.92-HR					
-FT) 20.	(HR) 24.92		18	•	9.	8.	8.					
PEAK STAGE (FEET)	TIME (HR)		6-Н 127.5	R 24		72-HR 121.04	24.92-HR 121.04					
128.42	24.92	CUMULAT	IVE AREA		SQ MI							
*** *** ***	*** *** ***	*** ***	*** ***	*** *** **	** *** ***	* *** *** *	*** *** ***	*** *** *	** *** ***	*** *** *	** *** ***	*** *** ***

207 KK	* K	*										
	* *********	*										
208 KO		CONTROL	, VARIABLE	B PRINT C	ONTROL							
		IPLOT QSCAL	0) PLOT CO HYDROGR) PUNCH C	APH PLOT	SCALE YDROGRAPH						
		IPNCH IOUT ISAV1	21	SAVE HY	DROGRAPH	ON THIS UN UNCHED OR	SAVED					
	ŋ	ISAV2 TIMINT	300) LAST OR 3 TIME IN	DINATE PU	NCHED OR S.	AVED					
		DRAIN AREA	NAGE ZONE NORTH OF	K ARENA CAN	AL & EAST	OF SULTAN	A DR					
	SUBBASI	N RUNOFF										
211 BA	SUBBA	SIN CHARA TAREA	ACTERISTI	CS 0 SUBBASI	N AREA							
	PRECI	PITATION	DATA									
PB		STORM				IPITATION						
18 PI	INC	.00	.00	ATION PATT	.00	.00	.00	.00	.00	.00 .00	.00 .00	
		.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00	.00	.00	.00 .00	.00 .00	
				-								

		.00 .00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .01	.00 .00 .00 .00 .01	.00 .00 .00 .00 .01	
		.00 .01 .01 .01 .00	.01 .01 .00	.01 .01 .01 .01 .00	.01 .01 .01 .01 .00	.01 .04 .01 .01 .00 .00	.04 .01 .01 .00 .00	.04 .01 .01 .00 .00	.04 .01 .01 .00 .00	.04 .01 .00 .00	.04 .01 .00 .00	
:		.00 .00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00	
		.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00	
212 LS	SCS I	OSS RATE STRTL CRVNBR RTIMP	83 50	CURVE NUL	ABSTRACTIC ABER IMPERVIOUS							
213 UD	SCS I	DIMENSIONLE TLAG	SS UNITGRA .85	PH LAG		***						
	23.	74.	140.	227. 694.	UI 53 END 340. 633.	VIT HYDROGI -OF-PERIOD 476. 557.	RAPH ORDINATES 607. 466.	709. 388.	776.	808. 283.		
	811. 243. 54. 12. 2.	794. 211. 46. 10. 1.	748. 183. 40. 9. 0.	158. 34. 8.	135. 29. 7.	115. 25. 6.	99. 22. 5.	85. 19. 4.	74. 16. 3.	62. 14. 3.		
TOTAL RAI	[NFALL =	2.06, TC	OTAL LOSS =		, TOTAL E		.76					
PEAK FLOW (CFS) 154.	TIME (HR) 10.83	(CFS) (INCHES) (AC-FT)	6-HR 75. .466 37.	24	UM AVERAG -HR 30. 753 60.	E FLOW 72-HR 29. .753 60.	24.92-HR 29. .753 60.					
		CUMULAT	IVE AREA =	1.50	SQ MI							
***		***	***		***		***					
		HYDROG FOR	RAPH AT ST. PLAN 1, RA	ATION TIO = 1.0	к 00							
TOTAL RA	INFALL =		OTAL LOSS), TOTAL F	XCESS =	.76					
PEAK FLOW (CFS) 154.	TIME (HR) 10.83	(CFS) (INCHES)	.466	2	MUM AVERAG 4-HR 30. .753 60.	GE FLOW 72-HR 29. .753 60.	24.92-HR 29. .753 60.					
		(AC-FT) CUMULAT	IVE AREA =		SQ MI							
* * *		***	***	. ·	***		***					
		HYDROO FOR	GRAPH AT ST PLAN 1, RA	TATION ATIO = 1.	К 39							
TOTAL R	AINFALL =		IOTAL LOSS			EXCESS =	1.37					
PEAK FLOW (CFS) 304.	TIME (HR) 10.83	(CFS (INCHES) .86	R 2	MUM AVERA 24-HR 55. .356 108.	GE FLOW 72-HR 53. 1.356 108.	24.92-HR 53. 1.356 108.					
		(AC-FT CUMULA	TIVE AREA	-) SQ MI							
												TTT TTT TTT TTT
	ملومات شد مار در ا	*** *** **	* *** ***	*** ***	*** *** *1	* * * * * * * *	*** *** ***	*** *** *	** *** ***	* *** *** 7	*** ***	*** *** *** ***
*** *** ***	*** ***											

214 KK * DET K

*

215 КО	IH IH	PRNT PLOT SCAL	0 0. TON BASIN	PRINT CONT PLOT CONTR HYDROGRAPH AT TERMINU OWING PARA	OL PLOT SCA S OF DRAI	ALE. INAGE ZONE	K, ADJACENI	r Sultana 1	DR			
	HYDROGRAPH	H ROUTIN	g data									
21 ?	N	ROUTING STPS ITYP VRIC X	STOR	NUMBER OF TYPE OF IN INITIAL CO WORKING R A	ITIAL CON	NDITION						
219 SA	AR	EA	10.0	10.3	10.6	10.9	11.2	11.5	11.7	12.0	12.3	12.9
220 SE	ELEVATI	ON	125.00	126.50	128.00	129.50	131.00	132.50	134.00	135.50	137.00	140.00
221 SQ	DISCHAR	GE	0.	1.	1.	1.	1.	1.	1.	1.	1.	7.
		1- a.				***						
				COM	1PUTED ST	ORAGE-ELE	VATION DATA					
	TORAGE VATION	.00 125.00	15.22 126.50	30.87 128.00	46.96 129.50			97.85 134.00	115.69 135.50	133.96 137.00	171.82 140.00	
***	**	*	***		***		***					
***		HYDROGI	RAPH AT ST PLAN 1, RA	ATION DI TIO = 1.00	ET K							
PEAK FLOW (CFS) 1.	TIME (HR) 11.42	(CFS) (INCHES) (AC-FT)	6-HR 1. .003 0.	.0	M AVERAGI HR 0. 07 1.	E FLOW 72-HR 0. .007 1.	24.92-HR 0. .007 1.					
PEAK STORAGE (AC-FT) 60.	TIME (HR) 24.92		6-HF 54.	24-22	5.	72-HR 24.	24.92-HR 24.					
PEAK STAGE (FEET)).66	TIME (HR) 24.92		6-HH 130.11	24-		E STAGE 72-HR 127.27	24.92-HR 127.27					
		CUMULAT	IVE AREA =	= 1.50 S	SQ MI							
***	*	**	**	k	***		***					
		HYDROG FOR	RAPH AT S PLAN 1, R	TATION I ATIO = 1.39	DET K							
PEAK FLOW	TIME		6-H		JM AVERAG	E FLOW 72-HR	24.92-HR					
(CFS) 1.	(HR) 10.67	(CFS) (INCHES) (AC-FT)	1		0. 008 1.	0. .008 1.	0. .008 1.					
PEAK STORAGE (AC-FT) 108.	; TIME (HR) 24.92		6-н 98	R 24	M AVERAGI -HR 46.	E STORAGE 72-HR 45.	24.92-HR 45.					
PEAK STAGE (FEET) 134.84	TIME (HR) 24.92		6-H 134.0	R 24		72-HR	24.92-HR 129.16					
		CUMULA	TIVE AREA	= 1.50	SQ MI							
	* * * * * * * * * * * * * *		* *** ***	*** *** **	* *** **	* *** ***	*** *** ***	*** *** *	** *** ***	*** *** *	** *** ***	*** *** ***
222 KK	* * *****	*										
223 KO	OUTPU	T CONTRO IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT	0 2 30	ES 3 PRINT CO 0 PLOT CO 1 HYDROGRA 0 PUNCH CY 1 FIRST OR 0 LAST OR 3 TIME IN	NTROL APH PLOT OMPUTED F OROGRAPH RDINATE F DINATE PU	IYDROGRAPH ON THIS U PUNCHED OR JNCHED OR	SAVED					

SUBBASIN RUNOFF DATA

SUBBASIN CHARACTERISTICS 226 BA .25 SUBBASIN AREA TAREA

PRECIPITATION DATA

	EUROFIT								
1	STORM	2.06	BASIN TO	TAL PRECIP	ITATION				
18 rI	INCREMENT	AL PRECIPITA	FION PATTE	ERN	00	.00	.00	.00	.00
10 11	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	-00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	-00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.01	.01	.01
	.00	.00	.01	.01	.01		.04	.04	.04
	.01	.01	.01	.01	.04	.04	.01	.01	.01
	.01	.01	.01	.01	.01	.01	.01	.01	.00
	.01	.01	.01	.01	.01	.01	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00		.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00		.00	.00
	.00	.00	.00	.00 .	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	.00	.00	.00	.00
	.00	.00	.00	.00	.00	_00	.00	.00	.00
	.00	.00	00	.00	.00	.00	.00	.00	

.00 .00 .00 .00 .00 .00 .00 .00 .00 00 .01 .04 .01 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

227	LS		scs	LOSS	RATE
221	20			STI	RTL
				CRVI	NBR

.44 INITIAL ABSTRACTION CURVE NUMBER 81.80 PERCENT IMPERVIOUS AREA

.00

.00 RTIME

.00

.00

SCS DIMENSIONLESS UNITGRAPH 228 UD .33 LAG TLAG

.00

*** UNIT HYDROGRAPH 22 END-OF-PERIOD ORDINATES 63. 128. 89. 267. 194. 317. 126. 252. 321. 2. 40. з. 3. 7. 5. 10. 21. 14. 30. 43. 0. 1. .68 1.38, TOTAL EXCESS = 2.06, TOTAL LOSS = TOTAL RAINFALL = MAXIMUM AVERAGE FLOW TIME PEAK FLOW 24.92-HR 72-HR 6-HR 24-HR (HR) (CFS) 4. 4. 11. 5. (CFS) 10.17 33. .679 .679 .679 .421 (INCHES) 9. 9. 9. 6. (AC-FT) .25 SQ MI CUMULATIVE AREA = *** *** *** *** *** HYDROGRAPH AT STATION \mathbf{L} FOR PLAN 1, RATIO = 1.00 1.38, TOTAL EXCESS = .68 2.06, TOTAL LOSS = TOTAL RAINFALL = MAXIMUM AVERAGE FLOW TIME PEAK FLOW 24.92-HR 72-HR 24-HR 6-HR (HR) (CFS) 4. 4 . (CFS) 11. 5. 33. 10.17 .679 .679 .679 .421 (INCHES) 9. 9. 9. 6. (AC-FT) .25 SQ MI CUMULATIVE AREA = *** *** *** *** *** HYDROGRAPH AT STATION L FOR PLAN 1, RATIO = 1.39 1.26 1.60, TOTAL EXCESS = 2.86, TOTAL LOSS = FOTAL RAINFALL = MAXIMUM AVERAGE FLOW TIME PEAK FLOW 24.92-HR 24-HR 72-HR 6-HR (CFS) (HR) 8. 8. 1.257 8. (CFS) 21. 10.17 70. 1.257 .799 1.257 (INCHES) 17. 17. 17. (AC-FT) 11.

	********	****										
	*	*										
K	*	°ь* *										

230 КО	OUTI	PUT CONTROL V IPRNT IPLOT QSCAL DETENTI ASSUMES	3 PI 0 PI	r TERMINU	ROL H PLOT SC. JS OF DRA	ALE INAGE ZONI	E L, ADJACE	NT HWY 99				
	HYDRO	GRAPH ROUTING	data									
233 RS	STO	RAGE ROUTING NSTPS ITYP RSVRIC	STOR T	YPE OF IN NTTTAL CO	SUBREACH NITIAL CO ONDITION AND D COE	NDITION						
		X	1.4	1.5	1.6	1.8	1.9	2.0	2.1	2.2	2.4	2.6
234 SA		AREA	T•4	1.5				100 50	124 00	135.50	137.00	140.00
235 SE	ELE	VATION	125.00 1	26.50	128.00	129.50	131.00	132.50	134.00	122.20	137.00	2.0000
236 SQ	DIS	CHARGE	0.	1.	1.	1.	1.	1.	1.	1.	1.	1.

				00	MDUTTED CT	OPAGE-ELF	VATION DATA	A				
			0.10	4.56	7.12				19.14	22.60	30.07	
F	STORAGE LEVATION	.00 125.00	2.19 126.50	128.00	129.50			134.00	135.50	137.00	140.00	
***		***	***		***		***					
		HYDROGR FOR P	APH AT STAT LAN 1, RATI	CION D = 1.00	ET L							
FLAK FLOW (CFS)	TIME (HR)		6-HR	24-		72-HR	24.92-HR 0.					
1.	10.83	(CFS) (INCHES) (AC-FT)	0. .019 0.	.0	0.)46 1.	0. .046 1.	.046 1.	· .				
	GE TIME	(110 117		MAXIMUM	AVERAGE	STORAGE						
PEAK STORA (AC-FT) 8.	(HR) 24.67		6-HR 8.	24-		72-HR 4.	24.92-HR 4.					
PEAK STAG	E TIME (HR)		6-hr	24-		72-HR	24.92-HR					
130.23	24.67		129.84	127.		127.25	127.25					
		CUMULATI	VE AREA =	.25 8	3Q MI							
***		***	***		***		***					
		HYDROGI FOR I	APH AT STAPLAN 1, RAT		DET L 9							
PEAK FLOW (CFS)	TIME (HR)		6-HR		UM AVERAG -HR	72-HR .	24.92-HR					
(CFS) 1.	10.17	(INCHES)	0. .019		0. 047 1.	0. .047 1.	0. .047 1.					
PEAK STORA (AC-FT)	GE TIME (HR)		0. 6-HR	24		STORAGE 72-HR 7.	24.92-HR 7.					
16. PEAK STAC			15 .	MAXIM	7. UM AVERAC		24.92-HR					
(FEET) 134.12	(HR) 24.83		6-HR 133.53	129		129.14	129.14					
		CUMULAT	IVE AREA =	.25	SQ MI							

* * *******

020	RO .	OUTPUT CONTROL	VARIABLES	
238	NO	TPRNT	3	PRINT CONTROL
			n	PLOT CONTROL
		IPLOT		
		OSCAL	· 0.	HYDROGRAPH PLOT SCALE
			0	PUNCH COMPUTED HYDROGRAPH
		IPNCH	U	PUNCH COMPORED MIDICOULT
		IOUT	21	SAVE HYDROGRAPH ON THIS UNIT
				FIRST ORDINATE PUNCHED OR SAVED
		TSAV1	1	FIRST URDINATE FUNCTION OF STREET
			300	LAST ORDINATE PUNCHED OR SAVED
		ISAV2		
		TIMINT	.083	TIME INTERVAL IN HOURS

DRAINAGE ZONE H

SUBBASIN RUNOFF DATA

17 PB

242 UD

240 BA	SUBBASIN CHARACTERISTICS	
240 DA	TAREA .70	SUBBASIN AREA

PRECIPITATION DATA STORM

2.06 BASIN TOTAL PRECIPITATION

241 LS	SCS LOSS RATE STRTL CRVNER RTIMP	81.10	INITIAL ABSTRACTION CURVE NUMBER PERCENT IMPERVIOUS AREA	
--------	---	-------	--	--

SCS DIMENSIONLESS UNITGRAPH TLAG .94 LAG

+++	

	9. 342. 138. 35. 9. 2.	27. 343. 120. 31. 8. 2.	51. 340. 105. 26. 7. 2.	82. 322. 92. 23. 6. 1.	UNIT 58 END-OF 120. 302. 81. 20. 5. 1.	HYDROGRAH PERIOD OF 168. 280. 70. 17. 4. 1.	223. 223. 254. 62. 15. 4. 1.	271. 222. 53. 13. 3. 0.	306. 188. 46. 12. 3.	330. 159. 40. 10. 3.
--	---------------------------------------	--	--	---------------------------------------	---	--	--	--	----------------------------------	----------------------------------

TOTAL R	AINFALL =	2.06, TOTA	L LOSS =	1.41, TOTAI	EXCESS =	.65
PEAK FLOW (CFS) 54.	TIME (HR) 11.00	(CFS) (INCHES) (AC-FT)	6-HR 29. .384 14.	MAXIMUM AVER 24-HR 12. .638 24.	RAGE FLOW 72-HR 12. .638 24.	24.92-HR 12. .638 24.

.70 SQ MI CUMULATIVE AREA =

*** *** *** *** ***

HYDROGRAPH AT STATION FOR PLAN 1, RATIO = 1.00 Н

OTAL RA	INFALL =	2.06, TOTA	L LOSS =	1.41, TOTAI	, EXCESS =	.65
PEAK FLOW (CFS) 54.	TIME (HR) 11.00	(CFS) (INCHES) (AC-FT)	6-HR 29. .384 14.	MAXIMUM AVE 24-HR 12. .638 24.	RAGE FLOW 72-HR 12. .638 24.	24.92-HR 12. .638 24.

		CUMULATIVE	AREA =	.70 SQ MI	-						
***		***	***	**	*	***					
		HYDROGRAE FOR PLA	PH AT STATIO	ON H = 1.39							
TOTAL RA	INFALL =	2.86, TOT#	LLOSS =	1.65, TOTA	L EXCESS =	1.21					
P. LOW	TIME		6-HR	MAXIMUM AVE 24-HR	RAGE FLOW 72-HR	24.92-HR					
(JLS) 115.	(HR) 10.92	(CFS) (INCHES) (AC-FT)	57. .752 28.	23. 1.198 45.	22. 1.198 45.	22. 1.198 45.					
		CUMULATIV	E AREA =	.70 SQ MI				·			
	+++ +++ **	* *** *** *	** *** ***	*** *** ***	*** *** ***	*** *** *** **	* *** ***	*** *** ***	*** *** *	** *** **	* *** ***
*** *** ***	*** *** ***										
	* * * * * * * * * * * * * *	****									
243 KK	* DEI *	`H * . *									

244 KO	OUTPU	JT CONTROL V IPRNT	3 PI	RINT CONTROL							
		IPLOT QSCAL	0 11	LOT CONTROL YDROGRAPH PL UNCH COMPUTE	OT SCALE						
		IPNCH IOUT	21 S	AVE HYDROGRA	PH ON THIS UN E PUNCHED OR	SAVED					
		ISAV1 ISAV2 TIMINT	300 L	AST ORDINATE IME INTERVAL	PUNCHED OR S	SAVED					
		ጋድምምእምገ	ON BASTN A		F DRAINAGE ZO	DNE H, ADJACEN	T HIGHWAY 9	99			
	HYDROG	RAPH ROUTING	G DATA								
247 RS	STOR	AGE ROUTING	1 N	UMBER OF SUE	REACHES						
		NSTPS ITYP RSVRIC	STOR T	YPE OF INITI NITIAL CONDI	AL CONDITION						
		X	.00 WC	RKING R AND	D COEFFICIEN		4.6	4.8	5.1	5.3	5.6
240 SA		AREA	3.3	3.6	3.8 4.	1 4.3	4.0				
249 SE	ELEV	ATION	115.00 1	17.00 119	9.00 121.0	0 123.00	125.00	127.00	129.00	131.00	133.00
250 SQ	DISC	HARGE	0.	1.	1. 1	. 1.	1.	1.	1.	1.	1.

				COMPU	TED STORAGE-E	LEVATION DATA					
I	STORAGE ELEVATION	.00 115.00	6.89 117.00	14.28 119.00		0.55 39.44 3.00 125.00		58.72 129.00	69.11 131.00	80.00 133.00	
		***	***		* * *	***					
***		HYDROGE	APH AT STA PLAN 1, RAT	TION DET IO = 1.00	H						
PEAK FLOW	TIME			MAXIMUM A 24-HR	VERAGE FLOW 72-HR	24.92-HR					
(CFS) 1.	(HR) 12.00	(CFS)	6-HR 1.	24-AR 0. .015	0. .015	0. .015					
		(INCHES) (AC-FT)	.007 0.	1.	1.	1.					
PEAK STORA (AC-FT) 23.	GE TIME (HR) 24.92		6-HR 21.	MAXIMUM AV 24-HR 9.	ERAGE STORAG 72-HR 9.	E 24.92-HR 9.					
PEAK STAG (FEET)	E TIME (HR)		6-HR 120.62	MAXIMUM <i>F</i> 24-HR 117.55	AVERAGE STAGE 72-HR 117.45	24.92-HR 117.45					
121.25	24.92	CUMULAT	IVE AREA =		4I						
					***	***					
***		***	***		***						
		HYDROG FOR	RAPH AT STA PLAN 1, RAI	$\frac{1}{100} = 1.39$	1 11						
PEAK FLOW (CFS)	N TIME (HR)		6-HR		AVERAGE FLOW 72-HR	24.92-HR					

(AC-FT) 0. 1. 1. PEAK STORAGE TIME MAXIMUM AVERAGE STORAGE FLUP 24-HR 72-HR 24.92-HR	
(AC-FT) (HR) $6-HR$ $24-HR$ $72-HR$ 18 18. 18.	
44. 24.92 PEAK STAGE TIME MAXIMUM AVERAGE STAGE (FEET) (HR) 125.07 119.77 119.59 119.59	
CUMULATIVE AREA = .70 SQ MI	
*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***	*** *** *** *** *** *** *** *** *** *** *** ***
****	· · · · · · · · · · · · · · · · · · ·
* * 251 KK * I *	
* *************************************	
252 KO OUTPUT CONTROL VARIABLES	
IPLOT O PLOT CONTROL	
IPNCH 0 PUNCH COMPUTED HYDROGRAPH	
ISAVI 1 FIRST ORDINATE PUNCHED OR SAVED	
ISAV2 300 LAST ORDINALE PORCHED OR OTHER TIMINT .083 TIME INTERVAL IN HOURS	
DRAINAGE ZONE I	
SUBBASIN RUNOFF DATA	
254 BA SUBBASIN CHARACTERISTICS TAREA .31 SUBBASIN AREA	
PRECIPITATION DATA	
17 PB STORM 2.06 BASIN TOTAL PRECIPITATION	
18 PI INCREMENTAL PRECIPITATION PATTERN 00 .00 <td< th=""><th>00.00.00.00 00.00.00</th></td<>	00.00.00.00 00.00.00
	00 00 00 00 00 00 00 00
	.00 .00 .00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00
00, 00 ,	.00 .00 .00
	.01 .01 .01 .01
.00 $.01$ $.01$ $.01$ $.04$ $.04$ $.04$ $.01$.01 .01 .01 .01
.01 $.01$ $.01$ $.01$ $.01$ $.01$ $.01$ $.01$.01 .01 .00 .00 .00 .00 .00 .00
	00.00.00.00 00.00.00.00
	00 00 00 00 00 00 00 00
	00 00 00 00 00 00 00 00
	.00.00.00.00 .00.00.00
	00 00 00 00 00 00 00 00
	00 00 00 00 00 00 00 00
	.00 .00 .00 .00 .00 .00
.00 .00 .00 .00 .00	
255 LS SCS LOSS RATE STRTL .37 INITIAL ABSTRACTION CRVNBR 84.50 CURVE NUMBER RTIMP .00 PERCENT IMPERVIOUS AREA	
TLAG .40 LAG	

UNIT HYDROGRAPH 26 END-OF-PERIOD ORDINAT	S 1. 230. 159. 116.
32. 97. 205. 303. $342.$ 334. 29 87. 65. 47. 35. 25. 18. 1	. 230. 133. 210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
TOTAL RAINFALL = 2.06, TOTAL LOSS = 1.25, TOTAL EXCESS = .81	
PEAK FLOW TIME MAXIMUM AVERAGE FLOW (CFS) (HR) 6-HR 24-HR 72-HR 24.92-H	

		(INCHES) (AC-FT)	.512	.812 14.		12 4.	.812 14.				-	
		CUMULATIVE	AREA =	.31 SQ MI	£							
***	*	***	***	,	* * *	*	**					
		HYDROGRAF FOR PLA	H AT STATI N 1, RATIO	ION :	I							
JTAL RA	INFALL =	2.06, TOTA		1.25, TO	TAL EXCES	S =	.81					
PEAK FLOW (CFS)	TIME (HR)		6-HR	MAXIMUM A 24-HR	72-	HR 2	24.92-HR 7.					
51.	10.25	(CFS) (INCHES) (AC-FT)	17. .512 9.	7. .812 14.	.8	7. 312 .4.	.812 14.					
		CUMULATIVE	E AREA =	.31 SQ M	I							
***	k	* * *	***		***	÷	***					
		HYDROGRAI FOR PLI	PH AT STAT	ION O = 1.39	I							
TOTAL RA	INFALL =	2.86, TOTA	AL LOSS =		TAL EXCE		1.44					
PEAK FLOW (CFS)	TIME (HR)		6-HR	MAXIMUM A 24-HR 12.	72-	LOW -HR 12.	24.92-HR 12.					
98.	10.25	(CFS) (INCHES) (AC-FT)	31. .917 15.	1.435 24.	1.	435	1.435 24.					
		CUMULATIV	E AREA =	.31 SQ M	1I							
									**	* *** ***	*** *** **	** *** ***
*** *** ***	*** *** **	* *** *** *	** *** ***	* * * * * * * * * * * * * * * * * * * *	** *** **	* *** **	* *** *** *	** *** ***	*** *** *^			
	********	****										
257. KK	* DET * ****	*										
3 3	OUTPU	JT CONTROL V IPRNT IPLOT QSCAL DETENTJ ASSUMES	3 E 0 E 0. E	PRINT CONTRO PLOT CONTRO HYDROGRAPH AT TERMINUS DWING PARAM	l PLOT SCAI OF DRAIN	je IAGE ZONE	E I, SOUTH C	OF HWY 99				
	HYDROGI	RAPH ROUTING	G DATA									
261 RS	STOR	AGE ROUTING NSTPS ITYP RSVRIC X	1 1 STOR 5	NUMBER OF S TYPE OF INI INITIAL CON ORKING R AN	TIAL CON	DITION						
262 SA		AREA	.8	.9	1.0	1.1	1.3	1.4	1.5	1.7	1.8	1.9
263 SE	ELEV		110.00	112.00 1	14.00	116.00	118.00	120.00	122.00	124.00	126.00	128.00
264 SQ			0.	1.	1.	1.	1.	1.	1.	1.	1.	1.

				COM	PUTED STO		VATION DATA		16 95	20.29	24.00	
I	STORAGE ELEVATION	.00 110.00	1.63 112.00	3.52 114.00	5.66 116.00	8.0 118.0	10.74 120.00		16.85 124.00	126.00		
***		***	***		***		***					
		HYDROGF FOR E	APH AT STA LAN 1, RAT	ATION DI FIO = 1.00	ETI							
PEAK FLOW (CFS)	TIME (HR)		6-HR	MAXIMUM 24-H		FLOW 2-HR 0.	24.92-HR 0.					
1.	10.25	(CFS) (INCHES) (AC-FT)	1. .015 0.	.03	7.	.037 1.	.037 1.					
PEAK STORA (AC-FT) 13.	GE TIME (HR) 24.83		6-HR 12.	24-H 6	R ,	72-HR 6.	24.92-HR 6.					

PEAK STAGE TIME

MAXIMUM AVERAGE STAGE

121.53	24.92		120.80	115.43	115.23	115.23				
		CUMULATIVE	AREA =	.31 SQ MI						
* * *		***	***	***		***				
HYDROGRAPH AT STATION DETI FOR PLAN 1, RATIO = 1.39										
P. LOW	TIME			MAXIMUM AVER		24.92-HR				
(Cr'S)	(HR)		6-HR	24-HR	72-HR 0.	24.52 m 0.				
1.	9.83	(CFS)	1.	0. .039	.039	.039				
		(INCHES) (AC-FT)	.015 0.	1.	1.	1.				
	m T) (T			MAXIMUM AVERA	GE STORAGE					
PEAK STORAGE	TIME		6-HR	24-HR	72-HR	24.92-HR				
(AC-FT) 23.	(HR) 24.92		22.	11.	10.	10.				
	T T)(T)			MAXIMUM AVEF	AGE STAGE					
PEAK STAGE	TIME (HR)		6-HR	24-HR	72-HR	24.92-HR				
(FEET) 127.67	24.92		126.73	118.75	118.43	118.43				
		CUMULATIV	E AREA =	.31 SQ MI						

•

PEAK FLOW AND STAGE (END-OF-PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS FLOWS IN CUBIC FEET PER SECOND, AREA IN SQUARE MILES TIME TO PEAK IN HOURS

OPERATION	STATION	AREA	PLAN	:	RATIO 1 R	ATIO 2	TO PRECIPITATION
21) 10		.73	1	FLOW	1.00 93.	1.39 178.	
HYDROGRAPH AT				TIME	10.67	10.58	
ROUTED TO	DETA2A	.73	1	FLOW TIME	11.42	10.58	
			** 1	PEAK STAGES STAGE TIME	123.26	125.65 24.92	
ROUTED TO	RA2-1A	.73	1	FLOW TIME	0. 11.75	1. 10.92	
HYDROGRAPH AT	A2-1	.45	. 1	FLOW TIME	58. 10.25	120. 10.25	
2 COMBINED AT	COMB 1	1.18	1	FLOW TIME	58. 10.25	120. 10.25	,
HYDROGRAPH AT	A2-2	.20	1	FLOW TIME	5. 10.67	20. 10.33	
HYDROGRAPH AT	A2-3	.10	1	FLOW TIME	7. 10.25	19. 10.17	
3 COMBINED AT	A2	1.49	1	FLOW TIME	68. 10.33	158. 10.25	
ROUTED TO	DETA2B	1.49	1	FLOW TIME	1. 12.92	1. 10.58	
			** 1	PEAK STAGE STAGE TIME	S IN FEET 117.33 24.92	** 119.41 24.92	
ROUTED TO	RCP-AZ	1.49	1	FLOW TIME	0. 14.83	1. 12.58	
h GRAPH AT	A2-5	.50	1	FLOW TIME	11. 10.92	41. 10.67	
HYDROGRAPH AT	A2-4	.32	1	FLOW TIME	18. 10.58	48. 10.50	
3 COMBINED AT	CPA-Y1	2.30	1	FLOW TIME	28. 10.75	88. 10.58	
HYDROGRAPH AT	A3-1	.15	1	FLOW TIME	13. 10.33	32. 10.25	
HYDROGRAPH AT	A3-2	.10	1	FLOW TIME	7. 10.25	18. 10.17	
HYDROGRAPH AT	A3-3	.18	1	FLOW TIME	9. 10.58	26. 10.42	
4 COMBINED AT	CPA-Y2		1	FLOW TIME	53. 10.58	154. 10.42	
ROUTED TO	RCPAY2	2.74	1	FLOW TIME	52. 10.75	153. 10.58	
HYDROGRAPH AT	A2-6	.47	1	FLOW	13. 10.83	45. 10.58	
2 COMBINED AT	CP-AX	3.20	1	FLOW TIME	65. 10.75	198. 10.58	
ROUTED TO	RCP-AX	3.20	1	FLOW TIME	65. 11.00	197. 10.75	
HYDROGRAPH AT	A1-1	.18	1	FLOW TIME	4. 10.58	18. 10.17	
HYDROGRAPH AT	A1-2	.32	1	FLOW TIME	7. 10.58	34. 10.17	
3 COMBINED AT	DETA1	3.70	1	FLOW TIME	73. 11.00	228. 10.67	
ROUTED TO	DETA1	3.70	1	FLOW	2. 15.75	2. 11.42	
			*	* PEAK STAG STAGE TIME	ES IN FEET 99.88 24.92	104.63	

HYDROGRAPH AT	В	1.47	1	FLOW TIME	35. 11.08	123. 10.75
ROUTED TO	DETB	1.47	1	FLOW TIME	1. 15.50	1. 11.42
			** 1	PEAK STAGES STAGE TIME	S IN FEET * 94.20 24.92	* 99.50 24.92
HYL. APH AT	с	.39	1	FLOW TIME	9. 10.67	38. 10.25
ROUTED TO	DETC	.39	1	FLOW TIME	1. 13.33	1. 10.58
			** 1	PEAK STAGES STAGE TIME	105.03	* 111.17 24.67
HYDROGRAPH AT	D	.69	1	FLOW TIME	52. 10.75	117. 10.67
ROUTED TO	DETD	.69	1	FLOW TIME	1. 11.75	1. 10.67
			** 1	PEAK STAGE STAGE TIME		106.99 24.92
HYDROGRAPH AT	F	.65	1	FLOW TIME	20. 10.67	69. 10.50
ROUTED TO	DETF	.65	1	FLOW TIME	1. 13.83	1. 10.83
			** 1	PEAK STAGE STAGE TIME	S IN FEET 119.89 24.92	** 125.23 24.92
HYDROGRAPH AT	G	.32	1	FLOW TIME	32. 10.42	70. 10.42
ROUTED TO	DETG	.32	1	FLOW TIME	1. 10.92	1. 10.25
			** 1	PEAK STAGE STAGE TIME	CS IN FEET 123.04 24.92	** 128.42 24.92
HY. JRAPH AT	К	1.50	1	FLOW TIME	154. 10.83	304. 10.83
ROUTED TO	DET K	1.50	1	FLOW TIME	1. 11.42	1. 10.67
			** 1	PEAK STAGE STAGE TIME	ES IN FEET 130.66 24.92	** 134.84 24.92
HYDROGRAPH AT	L	.25	1	FLOW TIME	33. 10.17	70. 10.17
ROUTED TO	DET L	.25	1	FLOW TIME	1. 10.83	1. 10.17
			**	* PEAK STAG STAGE TIME	130.23	** 134.12 24.83
HYDROGRAPH AT	Н	.70	1	FLOW TIME	54. 11.00	115. 10.92
ROUTED TO	DETH	.70	1	FLOW	1. 12.00	1. 10.92
				* PEAK STAG STAGE TIME	ES IN FEET 121.25 24.92	125.98
HYDROGRAPH AT	I	.31	1	FLOW TIME	51. 10.25	98. 10.25
ROUTED TO	DETI	.31	1	FLOW TIME	1. 10.25	1. 9.83
				* PEAK STAC STAGE TIME	121.53	127.67 24.92

				SUMMARY (FLC	OF KINEMAT W IS DIREC	IC WAVE - I RUNOFF W	ITHOUT BA:	-CUNGE ROUT SE FLOW) INTERPOL COMPUTATION	ATED TO			
	ISTAQ	ELEMENT	DT	PEAK	TIME TO PEAK	VOLUME	DT	PEAK	TIME TO PEAK	VOLUME		
			(MIN)	(CFS)	(MIN)	(IN)	(MIN)	(CFS)	(MIN)	(IN)		
	FOR PLAN = RA2-1A	= 1 RATIO== 1 MANE	1.00 5.00	.50	1499.62	.01	5.00	.50	1495.00	.01		
CONTINUITY	SUMMARY	(AC-FT) - IN	FLOW= .59	24E+00 EX	CESS= .0000	E+00 OUTFI	LOW= .5820	E+00 BASIN	STORAGE=	.1229E-01 PERCENT	ERROR=	3
	FOR PLAN = RA2-1A	= 1 RATIO= 1 MANE	1.39 5.00	.50	1499.90	.02	5.00	.50	1495.00	.02		
CONTINUITY	SUMMARY	(AC-FT) - IN	FLOW= .61	.93E+00 EX	CESS= .0000	E+00 OUTFI	LOW= .6092	E+00 BASIN	STORAGE=	.1243E-01 PERCENT	ERROR=	4
	FOR PLAN RCP-AZ	= 1 RATIO= MANE	1.00 5.00	.50	890.58	.01	5.00	.50	895.00	.01		
CONTINUIT	Y SUMMARY	(AC-FT) - IN	FLOW= .57	753E+00 EX	CESS= .0000	E+00 OUTE	LOW= .4766	E+00 BASIN	STORAGE=	.9781E-01 PERCENT	ERROR=	.2
	FOR PLAN RCP-AZ	= 1 RATIO= MANE	1.39 5.00	.50	754.86	.01	5.00	.50	755.00	.01		
CONTINUIT	Y SUMMARY	(AC-FT) - IN	FLOW= .6	142E+00 EX	CESS= .0000)E+00 OUTF	LOW= .5160)E+00 BASIN	STORAGE=	.9781E-01 PERCENT	ERROR=	.1
	FOR PLAN RCPAY2	= 1 RATIO= MANE	1.00 3.96	52.61	642.83	.19	5.00	52.47	645.00	.19		
CONTINUIT	Y SUMMARY	(AC-FT) - IN	IFLOW= .2	715E+02 EX	(CESS= .000)	0E+00 OUTF	LOW= .2704	4E+02 BASIN	STORAGE=	.9794E-01 PERCENI	ERROR=	.1
	FOR PLAN RCPAY2	= 1 RATIO= MANE	1.39 3.20	153.80	631.48	.39	5.00	153.27	635.00	.39		
C VUII	Y SUMMARY	(AC-FT) - II	NFLOW= .5	723E+02 E2	KCESS= .000	0E+00 OUTE	LOW= .570	6E+02 BASIN	STORAGE=	.1450E+00 PERCENT	'ERROR=	.0
	FOR PLAN RCP-AX	= 1 RATIO= MANE	1.00 4.56	64.96	659.31	.20	5.00	64.87	660.00	.20		
CONTINUI	Y SUMMARY	(AC-FT) - I	NFLOW= .3	494E+02 E	XCESS= .000	OE+00 OUTI	FLOW= .346	2E+02 BASIN	I STORAGE=	.3074E+00 PERCEN	[ERROR=	.0
	FOR PLAN RCP-AX	= 1 RATIO= MANE	1.39 4.82	197.79	642.16	.44	5.00	197.11	645.00	.44		
CONTINUI	TY SUMMARY	(AC-FT) - I	NFLOW= .7	/512E+02 E	XCESS= .000	0E+00 OUT	FLOW= .747	0E+02 BASIN	N STORAGE=	3794E+00 PERCEN	ſ ERROR≕	.0

*** NORMAL END OF HEC-1 ***