

City of Livingston

Water Distribution System Master Plan

July 2007

August 21, 2007 6267B00

City of Livingston 1416 'C' Street Livingston, California 95334

Attention: Ms. Donna Kenney, Community Development Director

Subject: Water Distribution System Master Plan - Final

Dear Ms. Kenney:

We are pleased to submit the final report for the City of Livingston (City) Water Distribution System Master Plan. The report presents planning assumptions, the distribution system evaluation, recommended facility improvements to correct existing deficiencies and to serve future customers, and a capital improvement program.

This final report completes Carollo Engineers, P.C. work on the Water Distribution System Master Plan. We would like to extend our thanks to you, Mr. Warne, City Manager; Mr. Creighton, Public Works Director; Mr. Gottiparthy, City Engineer; and other City staff whose courtesy and cooperation were valuable components in ensuring that this document will assist the City achieve its mission.

We look forward to our continued efforts in providing the City with engineering services.

Sincerely,

CAROLLO ENGINEERS, P.C.

, Stry

David L. Stringfield, P.E. Partner

DLS/JLG:dlo

Enclosures: Final Report (15)

Jose Gutierrez, P.E. Project Manager

City of Livingston

WATER DISTRIBUTION SYSTEM MASTER PLAN

July 2007

DRAFT

7580 NORTH INGRAM AVENUE, SUITE 112 • FRESNO, CALIFORNIA 93711 • (559) 436-6616 • FAX (559) 436-1191 H:\Final\Livingston_FNO\6267B00\Rpt\Water\Water Distribution System Master Plan\TOC.doc

City of Livingston

WATER DISTRIBUTION SYSTEM MASTER PLAN

TABLE OF CONTENTS

Page No.

UTIVE SUMMARY	
STUDY OBJECTIVE	ES-1
STUDY AREA	ES-1
WATER SYSTEM OVERVIEW	
WATER REQUIREMENTS	
WATER SYSTEM EVALUATION	
CONCLUSIONS	
ES.6.1 Supply Capacity	ES-11
	ES-11
	ES-12
2	И ES-12
	STUDY AREA WATER SYSTEM OVERVIEW WATER REQUIREMENTS. WATER SYSTEM EVALUATION CONCLUSIONS ES.6.1 Supply Capacity. ES.6.2 Storage Capacity ES.6.3 Distribution System.

CHAPTER 1 – INTRODUCTION

1.1	BACKGROUND	1-1
1.2	SCOPE AND AUTHORIZATION	1-1
1.3	REPORT ORGANIZATION	1-3
1.4	ACKNOWLEDGMENTS	1-4
1.5	ABBREVIATIONS AND DEFINITIONS	1-4

CHAPTER 2 – PLANNING AREA CHARACTERISTICS

2.1	STUDY AREA	2-1
2.2	SOIL AND TOPOGRAPHY	2-4
	CLIMATE	
2.4	LAND USE	2-4
	HISTORICAL AND FUTURE GROWTH	

CHAPTER 3 – PLANNING AND DESIGN CRITERIA

WATER SUPPLY CAPACITY	
3.1.1 Normal Production Capacity	
STORAGE REQUIREMENTS	
3.2.1 Operational Storage	
SERVICE PRESSURES	
DISTRIBUTION MAINS	
HISTORICAL WATER USE	
3.5.1 Per-Capita Consumption	3-6
AVERAGE ANNUAL WATER DEMAND COEFFICIENTS	
	 3.1.1 Normal Production Capacity

3.7	PROJ	ECTED WATER REQUIREMENTS
3.8	PLAN	NING AND DESIGN CRITERIA SUMMARY
CHA	PTER 4	- EXISTING SYSTEM AND HYDRAULIC MODEL
4.1	SYST	EM OVERVIEW
	4.1.1	Supply Capacity
	4.1.2	Storage Reservoirs
4.2	HYDR	AULIC MODEL
	4.2.1	Data Collection and Validation
	4.2.2	Elements of the Hydraulic Model 4-4
	4.2.3	Hydraulic Model Calibration
CHA	PTER 5	- EVALUATION AND PROPOSED IMPROVEMENTS
5.1		LY CAPACITY
5.2		AGE CAPACITY
5.3		MMENDED IMPROVEMENTS
СНА	PTER 6	– CAPITAL IMPROVEMENT PROGRAM
6.1	-	ESTIMATING CRITERIA
-	6.1.1	Cost Estimating Accuracy
	6.1.2	Pipelines
	6.1.3	Pump Stations
	6.1.4	Reservoirs
	6.1.5	Land Acquisition
6.2	CAPIT	AL IMPROVEMENT PROGRAM
	6.2.1	Baseline Construction Cost
	6.2.2	Estimated Construction Cost
	6.2.3	Capital Improvement Cost
	6.2.4	Capital Improvement Program
	6.2.5	Future Users Benefit

		5-7	
6.3	FUNDING AND FINANCING OPTIONS	6-7	

APPENDIX A – Pacific Municipal Consultants Land Use and Population Projections APPENDIX B – Groundwater Conditions within the City of Livingston Urban Expansion Boundary Draft Report

LIST OF TABLES

Table ES.1 Table ES.2	Planning and Design Criteria Summary Capital Improvement Program	
Table 2.1	Land Use and Developed Service Area	
Table 3.1	Pipe Roughness Design Criteria	
Table 3.2	Water Supply Wells	3-6
Table 3.3	Historical Requirements and Per Capita Consumption (1995-2006)	3-8
Table 3.4	Historical Monthly Water Production (2004-2006)	3-9
Table 3.5	Daily Diurnal Water Demand Pattern	3-11
Table 3.6	Existing Water Demand Balance	3-13
Table 3.7	Projected Future Water Requirements	3-14
Table 3.8	Planning and Design Criteria Summary	3-15
Table 4.1	Current Groundwater Supply Capacity	4-3
Table 4.2	Fire Hydrant Test Locations	4-8
Table 5.1	Future Supply and Storage Requirements	5-2
Table 5.2	Existing and Recommended Storage Reservoirs	

Table 5.3	Proposed Improvements (2 pages)	5-7
Table 6.1	Pipeline Costs	6-2
Table 6.2	Capital Improvement Program (2 pages)	6-5

LIST OF FIGURES

Study Area	ES-3
Existing Water Distribution System	ES-7
Modeled Distribution System	ES-8
Proposed Capital Improvements (2 pages)	ES-14
Regional Location Map	1-2
Study Area	2-2
Annexation and Development Scenarios	2-3
General Plan Land Use	2-5
Water Supply Facilities	3-5
Daily Diurnal Water Demand Pattern	3-11
Existing Water Distribution System	
Modeled Distribution System	4-5
Hydrant Test Locations	4-7
Proposed Capital Improvements (2 pages)	5-5
Pumping Station Costs	6-3
Concrete Reservoir Costs	6-3
	Study Area Annexation and Development Scenarios General Plan Land Use Historical and Projected Population Existing Water Distribution System Modeled Distribution System Proposed Capital Improvements (2 pages) Regional Location Map Study Area Annexation and Development Scenarios General Plan Land Use Historical and Projected Population Water Supply Facilities Daily Diurnal Water Demand Pattern Existing Water Distribution System Modeled Distribution System Hydrant Test Locations Proposed Capital Improvements (2 pages) Pumping Station Costs Concrete Reservoir Costs

WATER DISTRIBUTION SYSTEM MASTER PLAN

This executive summary presents a brief background of the City of Livingston's (City) water distribution system, the need for this water distribution system master plan, proposed improvements to mitigate existing deficiencies, and proposed improvements for anticipated future growth. A summary of the capital improvement program costs through buildout of the Urban Reserve, including Areas 1 through 8 from the City's annexation and development scenarios (April 2007) is also presented.

ES.1 STUDY OBJECTIVE

Recognizing the importance of planning, developing, and financing water system facilities to provide reliable and enhanced service for existing customers and to serve anticipated growth, the City initiated the preparation of this water distribution system master planning study. The Water Distribution System Master Plan study has been coordinated with the preparation of the Wastewater System Master Plan, which were concurrently completed by Carollo Engineers, P.C. (Carollo).

The objective of the study included the following tasks:

- Establish water system design and planning criteria.
- Evaluate the existing water distribution system using computer hydraulic modeling.
- Perform a demand analysis and review supply capacity.
- Perform a system-wide storage analysis.
- Review existing system and propose improvements to enhance system reliability.
- Recommend improvements needed to service anticipated future growth.
- Develop a Capital Improvement Program for buildout conditions that will be used by the City in the determination of Development Impact Fees.

ES.2 STUDY AREA

The City adopted the Urban Area General Plan (General Plan) in December 1999. The General Plan delineates potential growth areas and identifies policies directing growth within its sphere of influence (SOI) and future growth boundaries. The 2006 City limits and the SOI encompass approximately 3.2 square miles (2,044 acres) and 4.7¹ square miles

FINAL - July 2007

H:\Final\Livingston_FNO\6267B00\Rpt\Water\Water Distribution System Master Plan\ES.doc

¹ Area calculations exclude Highway 99 and Caltrans on/off ramps. Common to land use area calculations in this report.

(3,002 acres), respectively. The Master Plan Study Boundary Area² encompasses approximately 12.6 square miles (8,051 acres). The SOI, the current City limits, and the Master Plan Study Boundary are shown on Figure ES.1.

In 2007, the City's planning consultant, Pacific Municipal Consultants (PMC), updated the City's growth plan and land use assumptions for areas outside the current City limits. In order to focus the work of this master plan, PMC provided land use scenarios and development assumptions for future growth. Development assumptions were presented for eight distinct areas around the City, as shown in Figure ES.2 (figure recreated based on information provided by PMC).

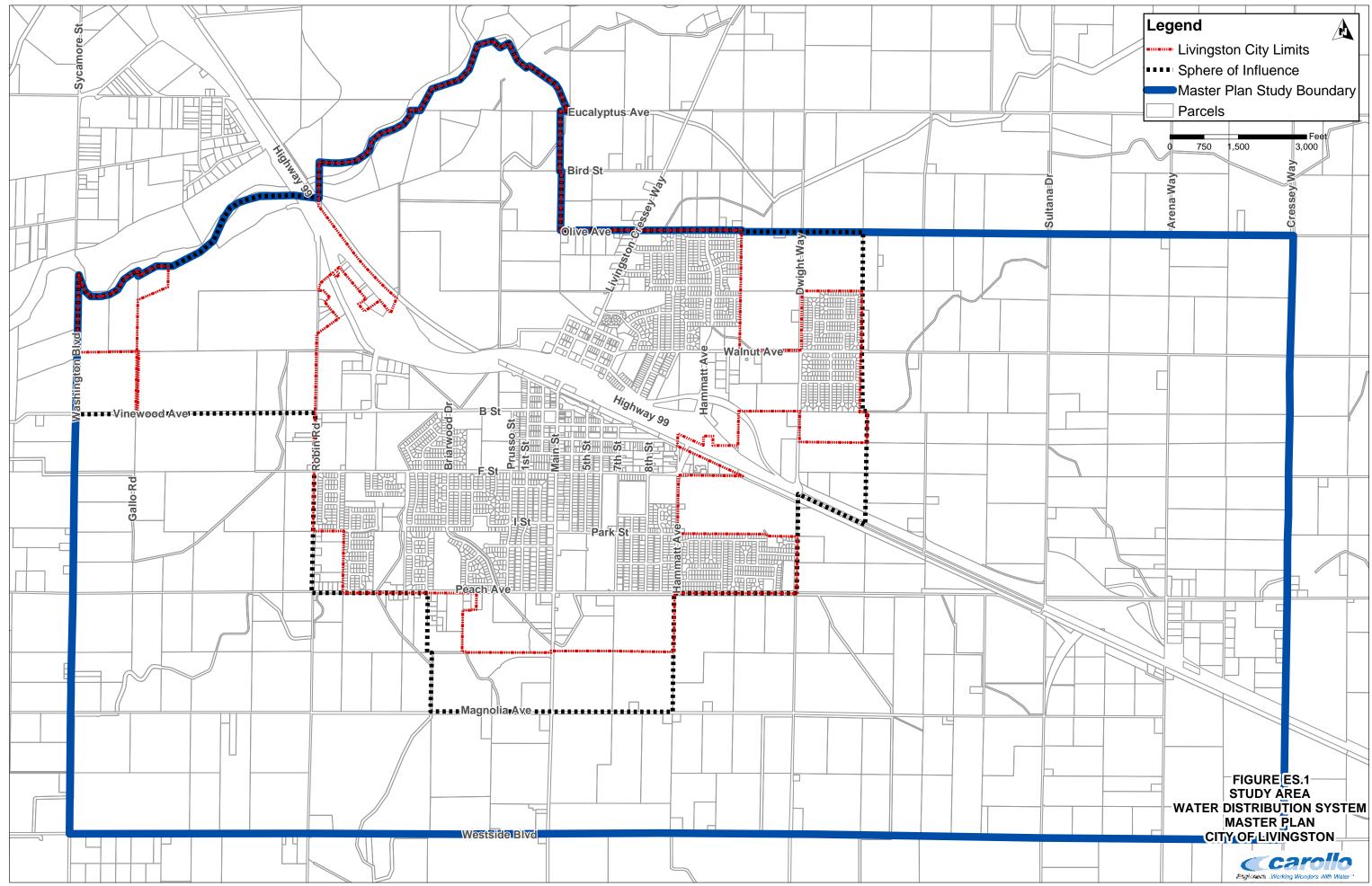
For areas defined Urban Reserve (land within the Master Plan Study Boundary but outside Areas 1 through 8) the City assumed these lands would build out similar to existing City land uses. This assumption was used to quantify the water demand coefficient for the Urban Reserve.

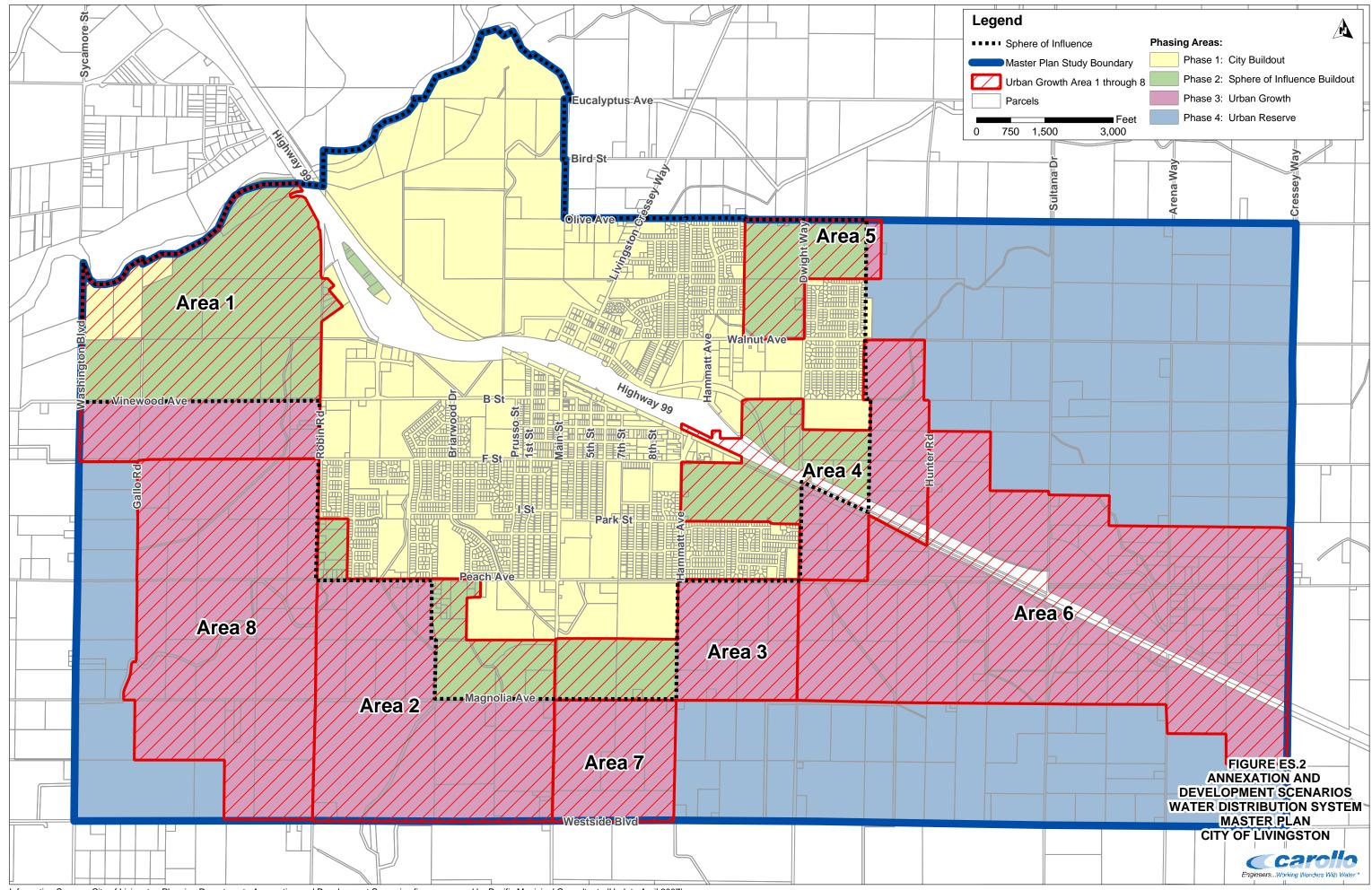
This master plan assumes that Areas 1 through 8 and the Urban Reserve represent the future water distribution system. The land use classifications used in this master plan are consistent with the City's General Plan (land use map updated April 2007) and the development assumptions for Areas 1 through 8 provided by PMC (Figure ES.3).

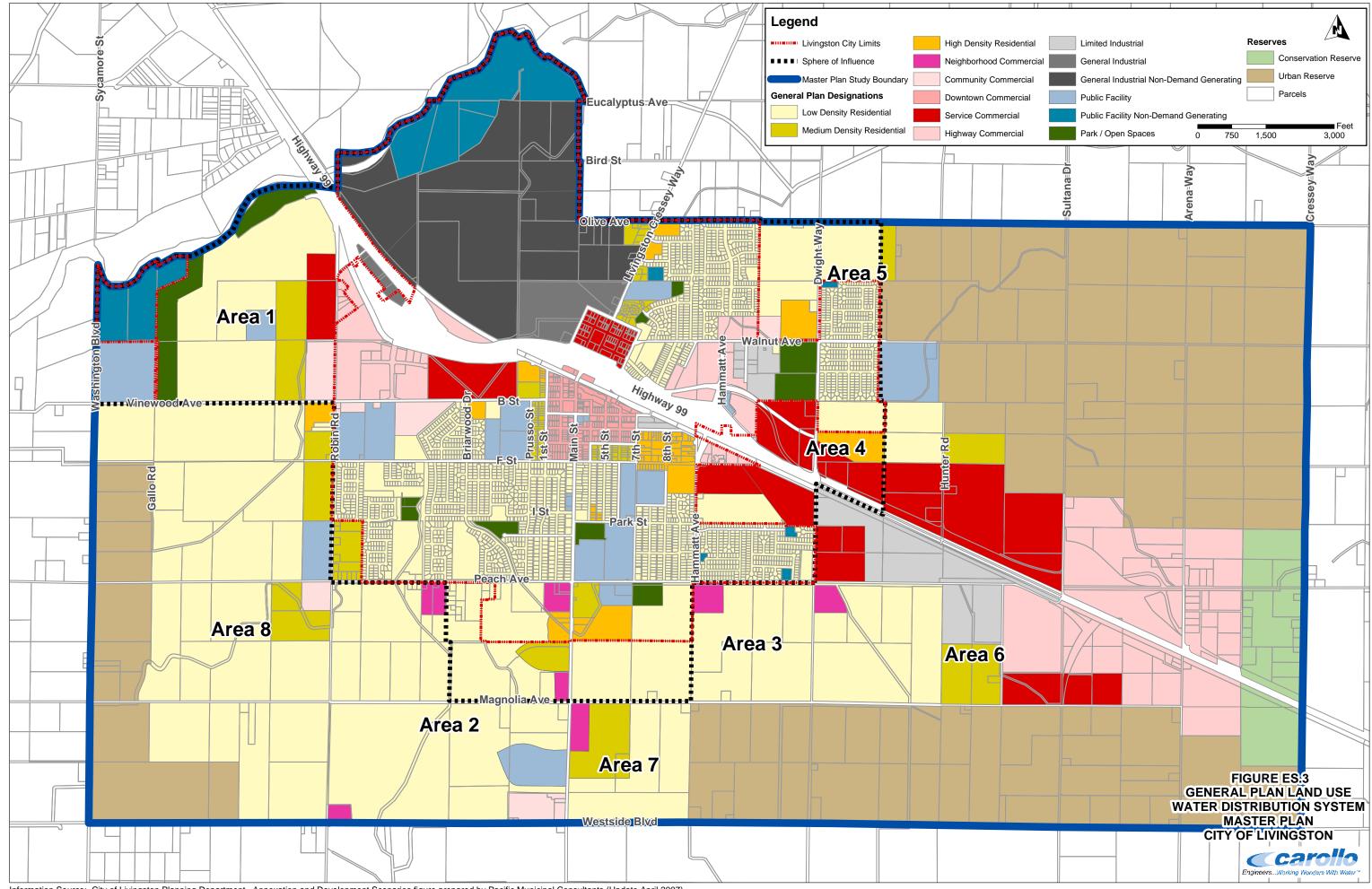
The City's 2005 population was approximately 15,400. The most recent available population projections were developed by the City's Planning Department consultant (PMC). The City forecasts that Livingston's population could reach approximately 39,700 in year 2012 and 72,800 in 2024 as shown on Figure ES.4.

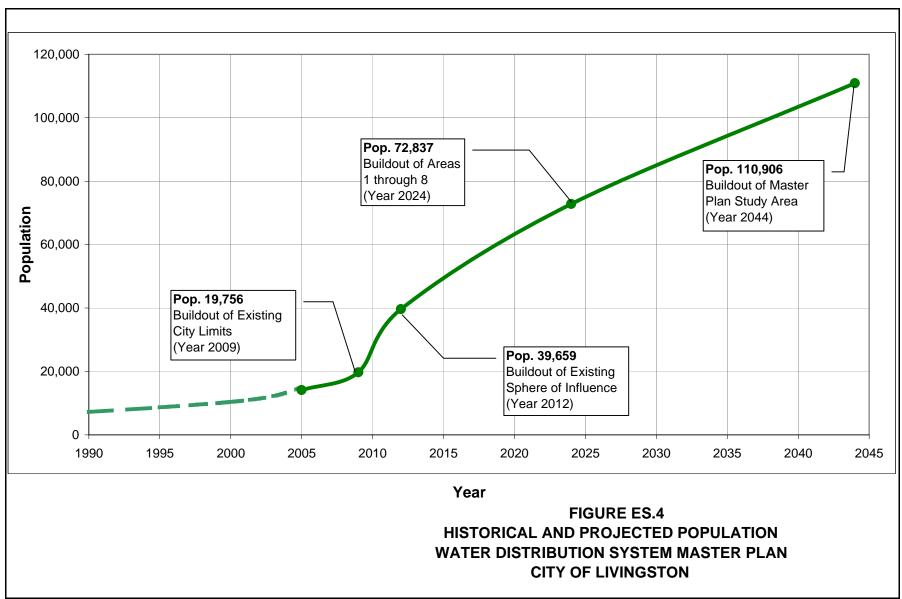
ES.3 WATER SYSTEM OVERVIEW

Livingston provides potable water service to its residential, commercial, industrial, and institutional customers within the City limits. The City's municipal water system extracts water from the underground aquifers via a series of groundwater wells distributed throughout the City. The City's water system facilities include eight active groundwater wells, a 1.0 million gallons (MG) potable water storage tank, and over 36 miles of pressured pipes ranging from 2- to 16-inches in diameter (Figure ES.5). Figure ES.6 illustrates the distribution system as modeled for this study.

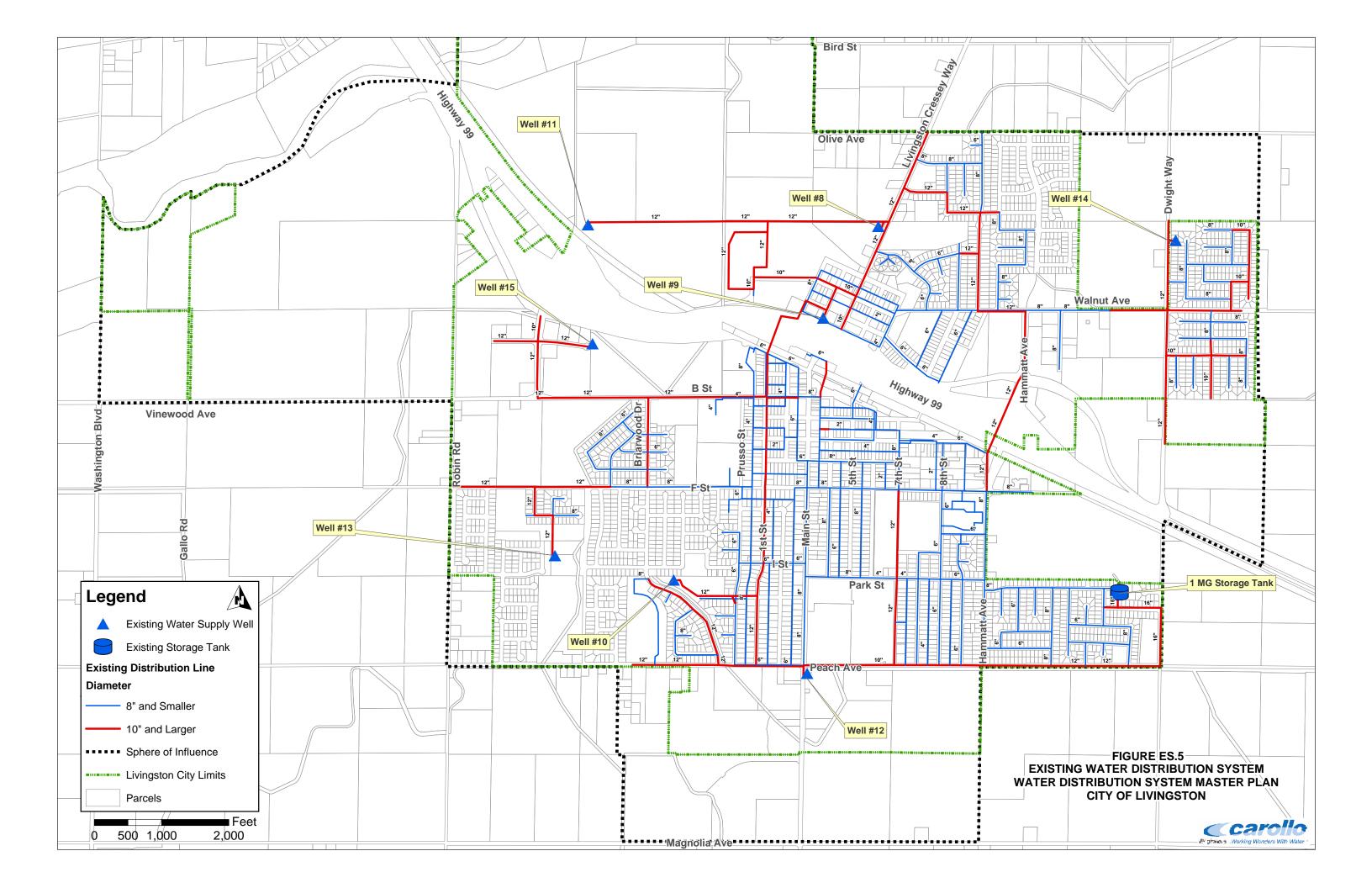

ES.4 WATER REQUIREMENTS

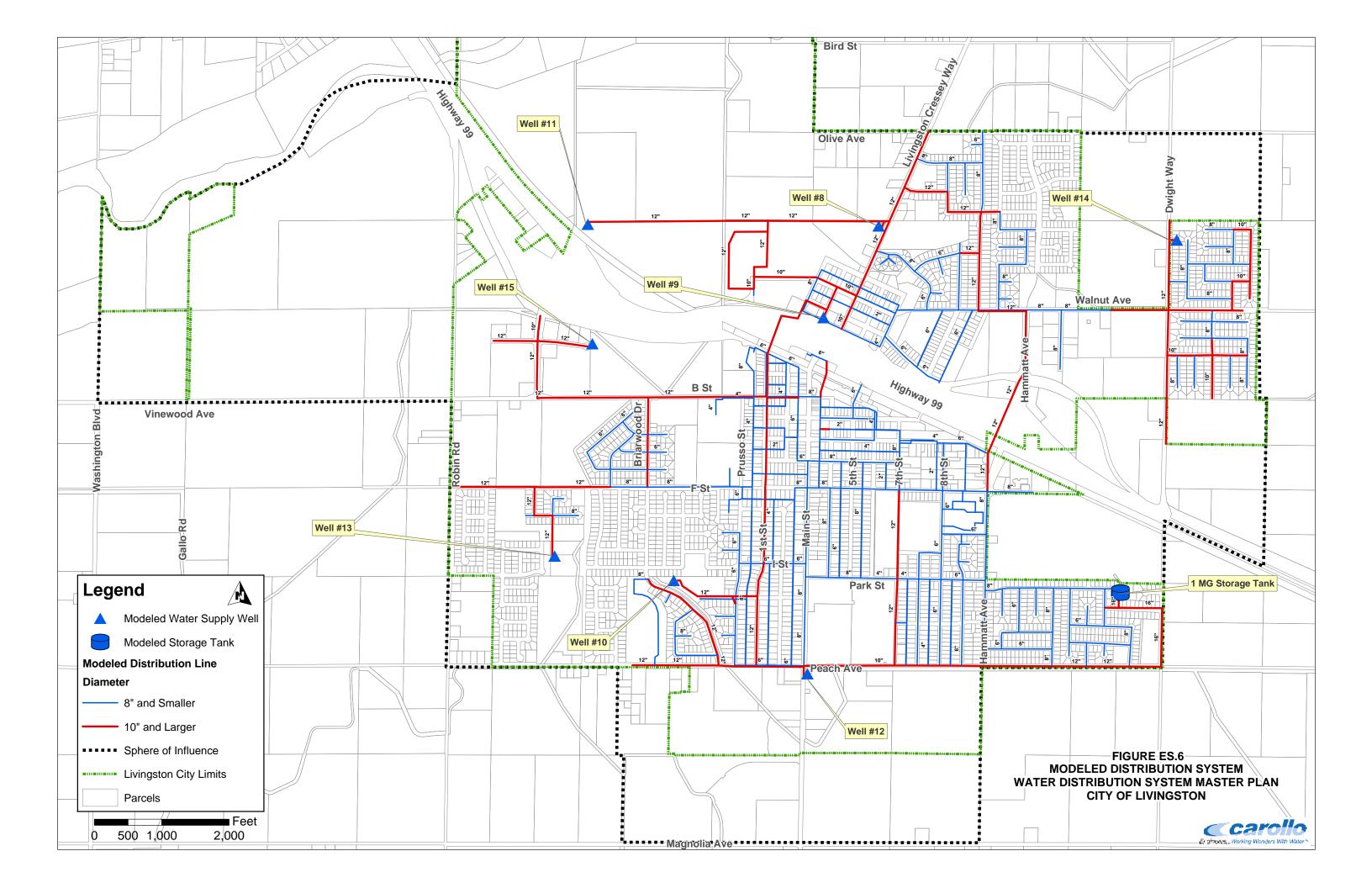

Historical water consumption and production records were reviewed to determine the daily, monthly, and seasonal fluctuations experienced by the water system. In 2003, the City produced 1.9 billion gallons (5.3 mgd or 5,969 acre-feet) of water servicing a population of approximately 12,600.


FINAL - July 2007


H:\Final\Livingston_FNO\6267B00\Rpt\Water\Water Distribution System Master Plan\ES.doc

² Boundaries based on City's Annexation and Development Scenarios developed by Pacific Municipal Consultants, December 20, 2005 (Appendix A).





Data Source: Population projections provided by Pacific Municipal Consultants, Land Use Assumptions, revised April 2007 (Appendix A).

The per capita consumption rate is used for estimating the City's future water requirements, evaluating the adequacy of the supply source, and determining storage needs. The consumption rate, expressed in gallons per day per capita (gpcd), is applied to the projected population to yield future water requirements. Over the past 10 years, the consumption rate in the City has ranged between a low of 423 gpcd in 2003 and a high of 628 gpcd in 1999. These are system wide per capita consumption rates. If industrial users are not included, the per capita consumption rates are considerably less. For planning purposes, a consumption rate of 150 gpcd will be used to estimate future water requirements in Livingston.

Based on the City's future population trends, it is anticipated that the City's average day and maximum day requirements at buildout of Areas 1-8 will approach 15.7 mgd (10,903 gpm) and 34.6 mgd (24,035 gpm), respectively.

ES.5 WATER SYSTEM EVALUATION

The City's water supply, storage, and distribution facilities were evaluated based on the analysis and design criteria defined in this study and summarized in Table ES.1. The developed criteria address the water supply capacity, storage capacity, acceptable service pressures, distribution main performance, average annual water demand coefficients, and daily and hourly peaking factors.

A hydraulic water model was assembled and used in evaluating the capacity adequacy of the water distribution facilities. Hydraulic network analysis is a powerful tool used in all aspects of water distribution planning, design, operation, management, emergency response, system reliability analysis, fire flow capacity evaluation, as well as water quality simulations. The hydraulic model evaluation consisted of 24-hour simulations during normal operations of a maximum day demand (MDD) condition. The simulations were used to assist in planning the future water facilities.

ES.6 CONCLUSIONS

The analysis of the City's water system indicates that the water distribution system was planned to meet the needs of existing customers. In fact, and in anticipation of future growth, City staff has planned and constructed water projects in conjunction with new street construction. The project improvements proposed in this master plan are needed to enhance the City's storage and supply capabilities during emergencies and to service future growth. City staff has been planning many of these enhancements, and have initiated their construction prior to the writing of this final report.

Each development project will include site-specific or project level engineering analysis and proposed solutions, to be consistent with the overall infrastructure approach in this Master

Water Distribution Syste	teria Summary m Master Plan				
City of Livingston					
	urce of Supply				
The adequate source of supply is required to meet:	Maximum Day [0emand + 1300 g	jpm.		
	Storage				
The adequate storage shall meet:		rage = 25% of M	aximum Day	Demand	
	Fire Storage = 0				
	Emergency Stor	age = 50% Maxi	mum Day D	emand	
Die	tribution Mains				
The distribution system should be sized to meet the greater of		and. or			
		Demand + Fire Fl	ow.		
Oritoria for judging the edgeway of eviating pipelines.	Maximum daair		aituu 10 faat		
Criteria for judging the adequacy of existing pipelines:		able pipeline velo able head loss: 1			
Headlos	ss in Existing Pipes				
leadloss in pipes shall be calculated based on the following	table:				
		Age (Years	5)		
Pipe Material		10 20	30	40	50
Asbestos Cement Cast Iron		25 125 10 100	125 90	125 80	125 70
Ductile Iron		25 120	90 115	80 110	105
Plastic (PVC)		40 140	140	140	14
Steel		20 110	100	90	80
Co.					
The recommended high/low pressures are as follows:	vice Pressures Maximum Press	ure =			80 psi
······································		ure (during Maxir	num Day) =		40 psi
		ure (during Peak			35 psi
	Minimum Resid	ual Pressure (du	ring Fires) =		20 psi
Water I	se Peaking Factors				
	onth Demand =		1.4 x Avera		mand
	ay Demand (Residential/C	ommercial) =	2.6 x Avera		
	ay Demand (System Wide	,	1.7 x Avera	• •	
	• • •	,	4.4 x Avera	• •	
Peak Hour D	Demand (Residential/Com				mand
. Sak Hour E	Demand (Residential/Com Demand (System Wide) =		2.4 x Avera	ige Day De	
		on	2.4 x Avera	ige Day De	
Per Capita	Demand (System Wide) =		2.4 x Avera	ige Day De	
Per Capita Demand forecasting shall be based on:	Demand (System Wide) = a Water Consumption City-Wide = 15	0 gpdc	2.4 x Avera	age Day De	
Per Capita Demand forecasting shall be based on: Average Ann	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients		age Day De	
Per Capita Demand forecasting shall be based on: Average Ann	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc <mark>ients</mark> e day water dema			
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc <mark>ients</mark> e day water dema	ands: Coefficients		
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema (gpd/acre 2,600	ands: Coefficients	s (<u>gpm/acre)</u> 1.81	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema <u>(gpd/acre</u>	ands: Coefficients	s (gpm/acre)	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema (gpd/acre 2,600	ands: Coefficients	s (<u>gpm/acre)</u> 1.81	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema (gpd/acre 2,600 4,600	ands: Coefficients	s (gpm/acre) 1.81 3.19	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema (gpd/acre 2,600 4,600 5,200	ands: Coefficients	s gpm/acre) 1.81 3.19 3.61	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients day water dema (gpd/acre 2,600 4,600 5,200 1,700	ands: Coefficients	5 (gpm/acre) 1.81 3.19 3.61 1.18	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Jowntown Commercial Neighborhood Commercial Highway Commercial	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700	ands: Coefficients	s 1.81 3.19 3.61 1.18 1.18	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Oowntown Commercial Neighborhood Commercial Highway Commercial Community Commercial	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700	ands: Coefficients	s (<u>gpm/acre)</u> 1.81 3.19 3.61 1.18 1.18 1.18	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Oowntown Commercial Veighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients a day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700	ands: Coefficients	5 (gpm/acre) 1.81 3.61 1.18 1.18 1.18 1.18 1.18	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Highway Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700	ands: Coefficients) (5 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Veighborhood Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing)	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700	ands: Coefficients) (5 (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial General Industrial General Industrial (existing) Public Facility Demand Generating	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema (gpd/acree 2,600 4,600 5,200 1,700	ands: Coefficients) (5 (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing) Public Facility Domand Generating Public Facility Non-Demand Generating	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 2,000	ands: Coefficients) (5 (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Owntown Commercial Neighborhood Commercial Neighborhood Commercial Service Commercial Ser	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 0,000 0 0 500	ands: Coefficients) (gpm/acre) 1.81 3.19 3.61 1.18 1.39 0.00	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Veighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial Service Commercial Limited Industrial (existing) Public Facility Demand Generating Public Facility Non-Demand Generating Seneral Industrial Non-Demand Generating Park/Open Space	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients e day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 0,00 0 0	ands: Coefficients) (s (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Veighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial Service Commercial Limited Industrial (existing) Public Facility Demand Generating Public Facility Non-Demand Generating Seneral Industrial Non-Demand Generating Park/Open Space	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffici	0 gpdc ients day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 0,000 0 0 500	ands: Coefficients) ((gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 0.00 0.00 0.35	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing) Public Facility Demand Generating Public Facility Domand Generating Park/Open Space Industrial Reserve Non-Demand Generating Park/Upen Space Industrial Reserve Non-Demand Generating Park/Upen Space	Demand (System Wide) = a Water Consumptic City-Wide = 15 ual Demand Coeffic acreages to yield average	0 gpdc ients e day water dema (gpd/acre 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 0 5,000 1,700 1,000 0,0000 0,000 0,000 0,000 0,000 0,00	ands: Coefficients) (5 (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	
Per Capita Demand forecasting shall be based on: Average Ann These demand coefficients are applied to the gross land use Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Veighborhood Commercial Neighborhood Commercial Service Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing) Public Facility Demand Generating Public Facility Non-Demand Generating Park/Open Space Industrial Reserve Non-Demand Generating	Demand (System Wide) = a Water Consumption City-Wide = 15 ual Demand Coeffic acreages to yield average acreages to yield average Fire Flows	0 gpdc ients e day water dema (gpd/acree 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 0 500 0 w = 1,200	ands: Coefficients) (s (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	hours

Plan. Some degree of flexibility in developing proposed solutions may be considered appropriate by the City in order to ensure the best possible alternative for the City.

While needs for distribution main enhancements are discussed in detail in the report, this section provides a summary of City-wide supply and storage capacity.

ES.6.1 Supply Capacity

The City's total and firm supply capacity from the existing eight groundwater wells is estimated at 10.8¹ mgd and 8.9¹ mgd, respectively. The firm capacity is defined as the total capacity less the largest well (2.0 mgd).

The City-wide supply analysis indicates that the maximum day demand (MDD) is approximately 11.9 mgd in year 2007. Since this demand must be met with the firm supply capacity, the current additional supply needs are calculated at 4.0 mgd (two wells at 2.0 mgd each).

A City-wide supply analysis was performed to provide recommendations for supply facilities to meet the City's needs through buildout conditions. Assuming the existing wells will remain in service at their current capacities, the total recommended increase in the source of supply through the year 2024 is 26 mgd. It is recommended that the City construct 13 new wells. The total recommended increase in the source of supply at buildout of Urban Reserve is 16 mgd (total recommended supply less 2024 available total supply). It is recommended that the City construct eight new wells between 2024 through buildout of the Urban Reserve area.

Please note that this analysis, consistent with established planning criteria, assumes that peak hour demands will be supplied by storage reservoirs. Should the storage upgrades described in this master plan be delayed, additional groundwater wells need to be constructed to meet the peak hour demand requirements. If storage has not been added by 2010, two additional groundwater wells will need to be constructed to meet the peak hour demands for that year. These two wells would be in addition to the wells proposed to meet the maximum day demand condition.

ES.6.2 Storage Capacity

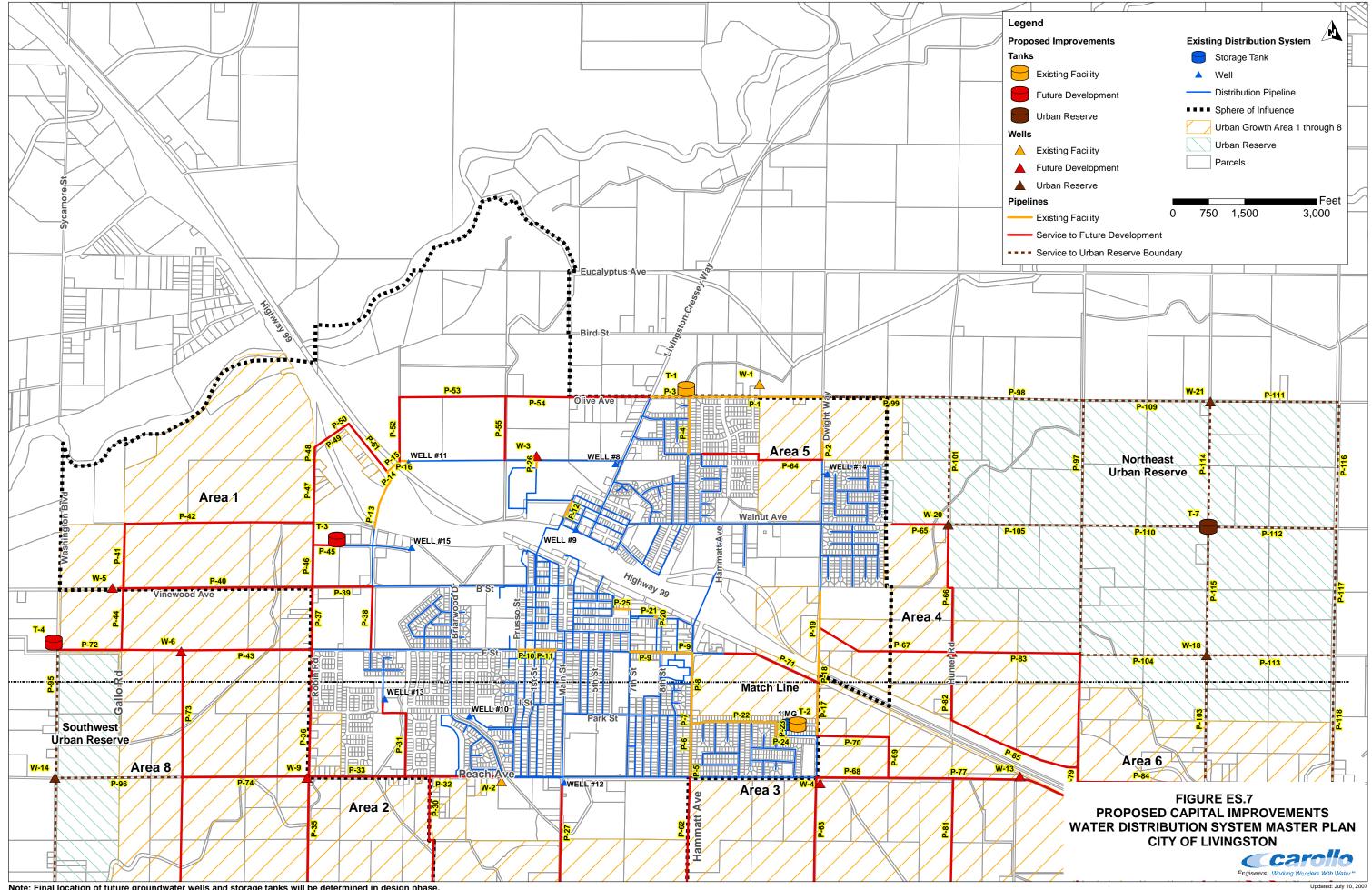
The City's current storage reservoir provides a total of 1 MG for servicing the City's operational, fire, and emergency needs. A City-wide storage analysis indicates that during current conditions, the system can not adequately meet the storage requirements defined in the Planning and Design Criteria chapter of this report.

¹ Excludes Well 10 due to high nitrate levels.

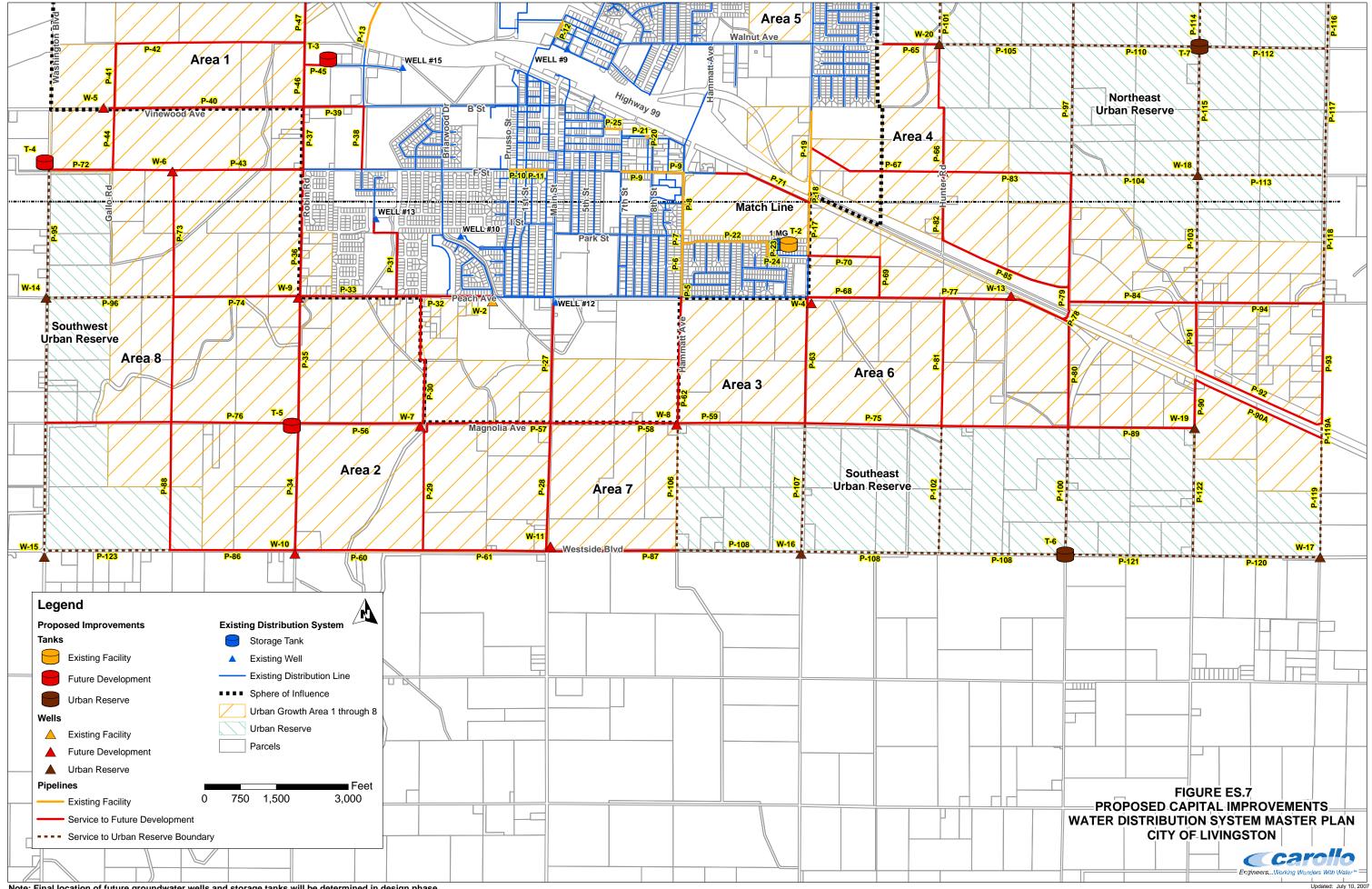
The existing storage requirements for the City total 9.9 MG. Therefore, the existing storage deficiency totals 8.9 MG. The total storage requirements through the buildout Areas 1 through 5 in year 2024 is expected to reach 18.0 MG.

Therefore, an additional storage capacity of 26 MG is required by year 2024. The recommended storage to service the Urban Reserve area includes 11 MG of additional storage.

ES.6.3 Distribution System


The recommended proposed projects consist of new or increased capacity pipelines that are needed to extend service to currently undeveloped areas. These proposed improvements, which are discussed in detail in the report and shown on Figure ES.7, are phased to provide capacity enhancements to the distribution system when they are needed to serve future anticipated developments.

ES.7 CAPITAL IMPROVEMENT PROGRAM


The cost estimates presented in the Capital Improvement Program (CIP) have been prepared for general master planning purposes and for guidance in project evaluation and implementation. Final costs of projects will depend on actual labor and material costs, competitive market conditions, final project scope, implementation schedule, and other variable factors such as: preliminary alignments generation, investigation of alternative routings, and detailed utility and topography surveys.

Knowledge about site-specific conditions for each proposed project is limited at the master planning stage; therefore, the Estimated Construction Costs include a 20 percent contingency to account for unforeseen events and unknown field conditions. The Capital Improvement Costs also include an additional 50 percent (applied to the Estimated Construction Costs) for project-related costs, comprised of engineering, administration, construction inspection, and legal costs. Table ES.2 summarizes the CIP for Livingston.

Table ES.2	Capital Improvement Program Water Distribution System Master Plan City of Livingston			
Planning Period	Years	Capital Cost	Current Users	Future Users
Phase I	2007-2009	\$15,045,000	\$13,932,000	\$1,113,000
Phase II	2009-2014	\$11,403,000	\$3,652,000	\$7,751,000
Phase III	2014-2019	\$26,583,000	\$863,000	\$25,720,000
Phase IV	2019-2024	\$33,340,000	\$0	\$33,340,000
Phase V	2024-2044	\$42,687,000	\$0	\$42,687,000
Total		\$129,058,000	\$18,447,000	\$110,611,000

Note: Final location of future groundwater wells and storage tanks will be determined in design phase.

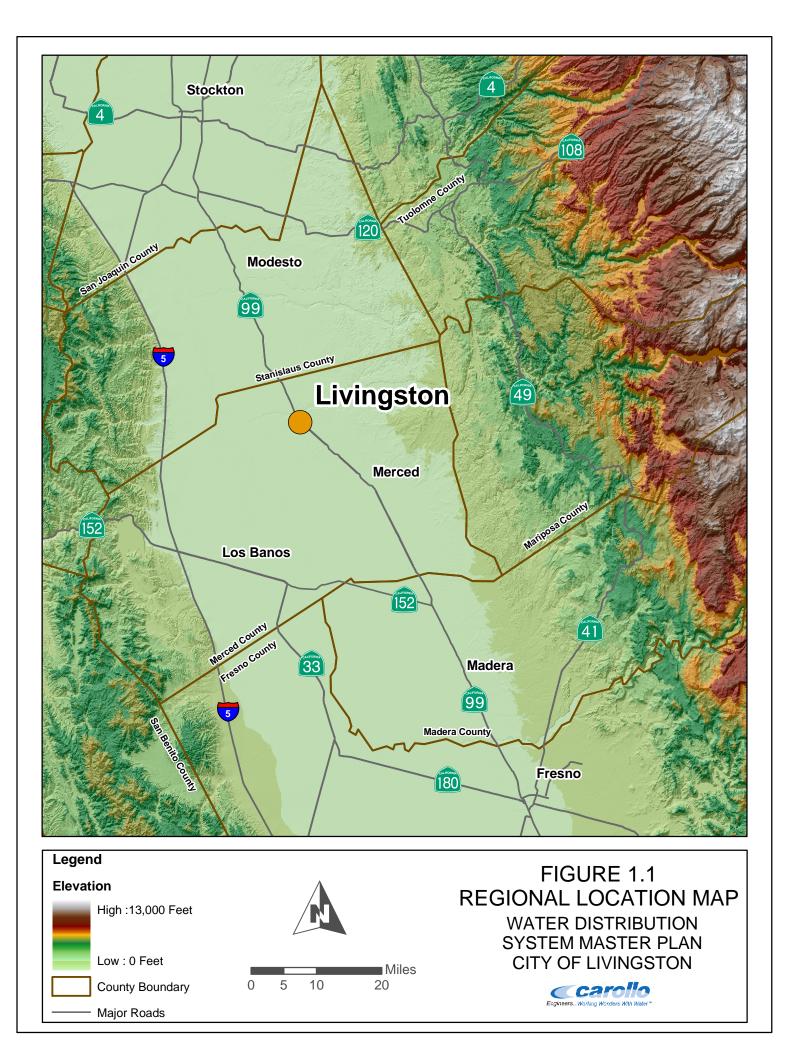
Note: Final location of future groundwater wells and storage tanks will be determined in design phase.

Chapter 1 INTRODUCTION

This chapter presents the need for this water system master plan and the objectives of the study. A list of abbreviations is also provided to assist the reader in understanding the information presented.

1.1 BACKGROUND

The City of Livingston (City) (Figure 1.1) operates its own water distribution system and associated infrastructure facilities and services customers within the City limits. The previous water system master plan, completed in September 1992 (1992 Plan) included a storage evaluation, recommended improvements to mitigate deficiencies, recommended improvements to accommodate growth, and a summary of capital costs associated with the improvements. The 1992 Plan was based on planning assumptions and operational conditions that have since changed.


In December 1999, the City updated the General Plan. Since the completion of the General Plan, the City has updated the Sphere of Influence (SOI) and the future growth boundaries. In 2007, the City's planning consultant, Pacific Municipal Consultants (PMC), updated the City's growth plan and land use assumptions for areas outside the current City limits, which identify lands intended for future urbanization. Land use assumptions used in this study are consistent with the General Plan update provided by PMC and describe existing and projected future development within the study area.

1.2 SCOPE AND AUTHORIZATION

Recognizing the importance of planning, developing, and financing water system facilities to provide reliable and enhanced service for existing customers and to serve anticipated growth, the City initiated the preparation of this water system master planning study.

On April 7, 2004, the City authorized Carollo Engineers, P.C. (Carollo) to prepare this water system master plan study, which included the following tasks:

- Establish water system design and planning criteria.
- Evaluate the existing water distribution system using computer hydraulic modeling.
- Perform a demand analysis and review supply capacity.
- Perform a system-wide storage analysis.

- Review existing system and propose improvements to enhance system reliability.
- Recommend improvements needed to service anticipated future growth.
- Develop a Capital Improvement Program for residential buildout conditions that will be used by the City in the determination of Development Impact Fees.

The study includes several planning assumptions that are documented in this report. Should future planning conditions deviate from the assumptions stated in this master plan (i.e., accelerated growth, more intense developments, supply source modifications, etc.), revisions and adjustments to the master plan recommendations would be necessary.

1.3 REPORT ORGANIZATION

The water system master plan report contains six chapters, followed by appendices that provide supporting documentation for the information presented in the report. The chapters are briefly described below:

Chapter 1 - Introduction. This chapter presents the need for this water system master plan and the objectives of the study. A list of abbreviations is also provided to assist the reader in understanding the information presented.

Chapter 2 - Planning Area Characteristics. This chapter presents a discussion of this study's planning area characteristics, defining the land use classifications and summarizing the historical population trends. City staff provided population projections used to estimate the City's future water requirements.

Chapter 3 - Planning and Design Criteria. The City's water supply, storage, and distribution facilities were evaluated based on the analysis and design criteria defined in this chapter. Historical water consumption and production records were reviewed to determine the daily, monthly, and seasonal fluctuations experienced by the water system. The developed criteria address the water supply capacity, storage capacity, acceptable service pressures, distribution main performance, average annual water demand coefficients, and daily and hourly peaking factors.

Chapter 4 - Existing System and Hydraulic Model. This chapter presents an overview of the City's water supply, distribution, and storage facilities. The chapter also describes the development and calibration of the City's water distribution system hydraulic model. This model was used for identifying existing system deficiencies and for recommending enhancements.

Chapter 5 - Water System Evaluation and Proposed Improvements. This chapter presents the results of the capacity evaluation of the water supply, distribution, and storage facilities. The chapter also presents improvements to mitigate existing system deficiencies

and for servicing future growth. These improvements are recommended based on the system's technical requirements, cost effectiveness, and operational reliability.

Chapter 6 - Capital Improvement Program. This chapter presents the recommended Capital Improvement Program (CIP) for the City's water distribution system. The program is based on the evaluation of the City's water distribution system, and on the recommended projects described in the previous chapters. The CIP has been prepared to assist the City in planning and constructing the water system improvements through the residential buildout of the Master Plan Study Boundary Area in year 2044.

1.4 ACKNOWLEDGMENTS

Carollo Engineers wishes to acknowledge and thank Mr. Richard Warne, City Manager; Mr. Nanda Gottiparthy, City Engineer; Ms. Donna Kenney, Community Development Director; and Paul Creighton, Public Works Director. Their own and their staff's cooperation and courtesy in obtaining a variety of necessary information were valuable components in completing and producing this report.

1.5 ABBREVIATIONS AND DEFINITIONS

To conserve space and to improve readability, the following abbreviations are used in this report.

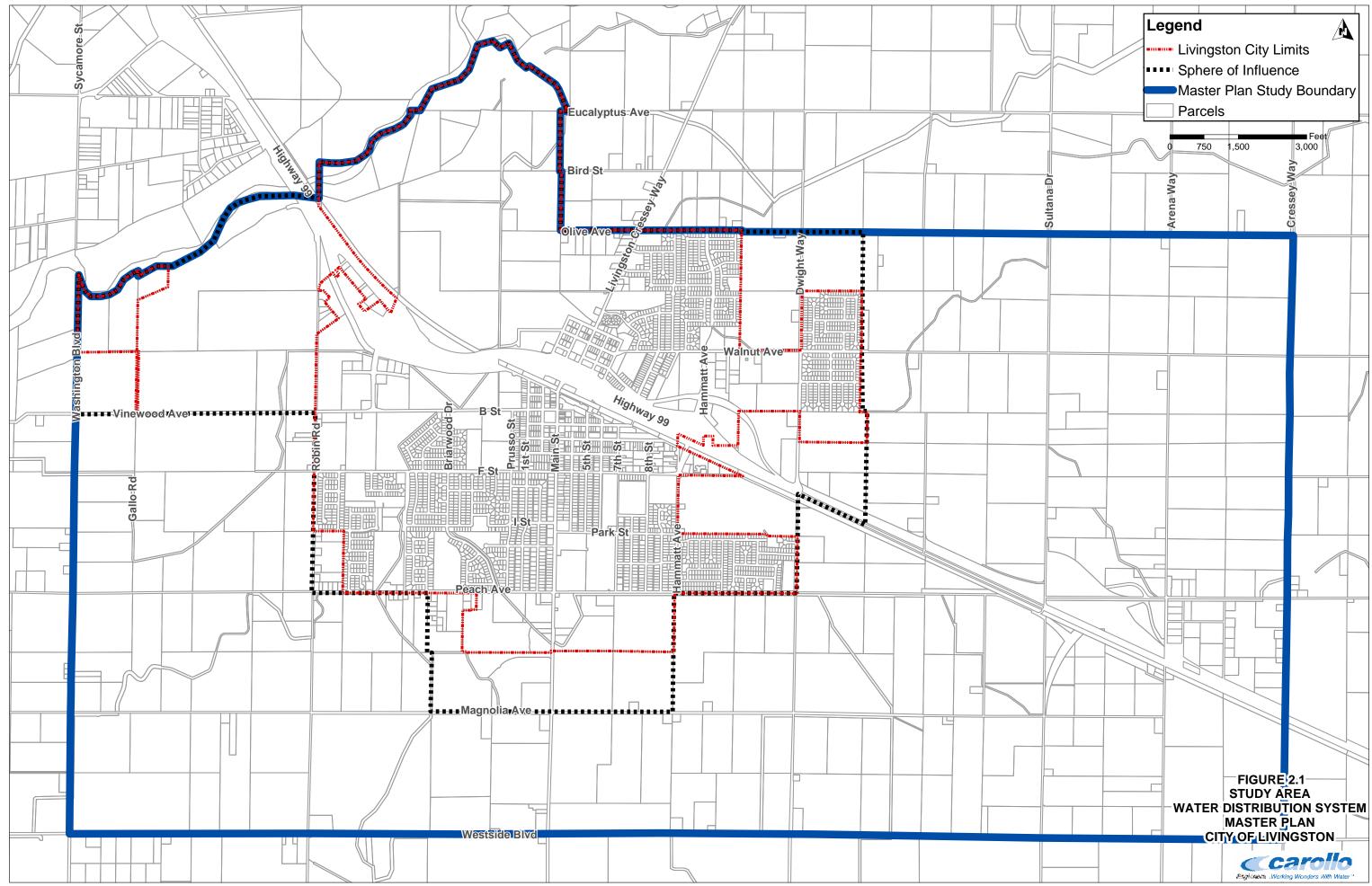
ADD	average day demand
AF	acre-feet
ASCE	American Society of Civil Engineers
CIP	capital improvement program
City	City of Livingston
cfs	cubic feet per second
County	County of Merced
DI	ductile iron
DOF	California Department of Finance
DHS	California Department of Health Services
DU	dwelling unit
ENR CCI	Engineering News Record Construction Cost Index

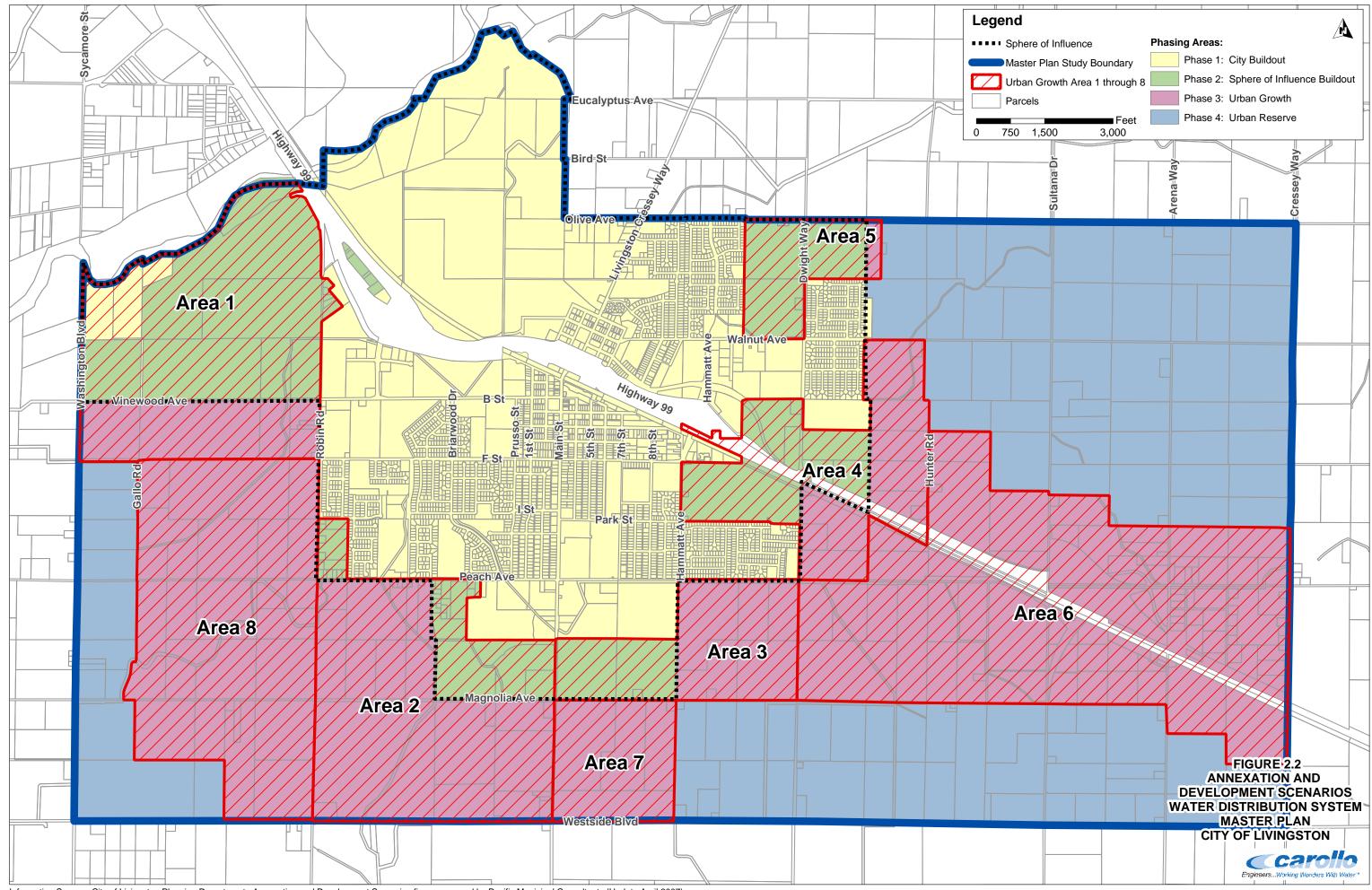
EPA	U.S. Environmental Protection Agency
GIS	geographic information system
fps	feet per second
gpad	gallons per acre per day
gpcd	gallons per capita per day
Water Map	Computer Hydraulic Model developed by MWH Soft
LF	linear feet
LAFCo	Local Agency Formation Commission
LUE	Land Use Element
MDD	maximum day demand
MG	million gallons
MMD	maximum month demand
mgd	million gallons per day
mgm	million gallons per month
mgy	million gallons per year
mgd	million gallons per day
PHD	peak hour demand
ROW	right-of-way
SOI	Sphere of Influence
sq ft	square feet

PLANNING AREA CHARACTERISTICS

This chapter presents a discussion of this study's planning area characteristics, defining the land use classifications and summarizing the historical population trends. City Staff provided population projections used to estimate the City of Livingston's (City) future water requirements.

2.1 STUDY AREA


The City is located along State Highway 99 in north central Merced County (County) within the Central Valley of California, approximately 115 miles southeast of San Francisco and 290 miles northwest of Los Angeles. Incorporated as a General City in 1922, Livingston is centrally located between Stockton and Fresno along the Highway 99 corridor. The Union Pacific Railroad passes through the City along the general alignment of State Highway 99.


The City is the governing agency and provides wastewater collection and treatment services within the City limits. The City adopted the Urban Area General Plan (General Plan) in December 1999. The General Plan delineates potential growth areas and identifies policies directing growth within its sphere of influence (SOI) and future growth boundaries. The Merced County Local Agency Formation Commission (LAFCo) reviews changes to the SOI and specific urban development plan boundaries, and annexations to cities.

The 2006 City limits and the SOI encompassed approximately 3.2 square miles (2,044 acres) and 4.7 square miles (3,002 acres), respectively. The Master Plan Study Boundary Area encompasses approximately 12.6 square miles (8,051 acres). The SOI, the City limits, and the Master Plan Study Boundary are shown on Figure 2.1.

In 2007, the City's planning consultant, Pacific Municipal Consultants (PMC), updated the City's growth plan and land use assumptions for areas outside the current City limits. PMC provided land use scenarios and development assumptions for future growth. The information provided by PMC addressed location, type and intensity for development in and around the City boundary and is presented in Appendix A.

The City's water distribution and wastewater collection master plans were prepared concurrently and identified the infrastructure necessary to service lands within the future growth area. Development assumptions were presented for eight distinct areas around the City, as shown in Figure 2.2 (figure recreated based on information provided by PMC).

The land beyond the City's limits and Areas 1 through 8 is generally described as Urban Reserve by the City. It was assumed that the Urban Reserve would develop similar to existing City land uses. These land use designations are also included in Appendix A.

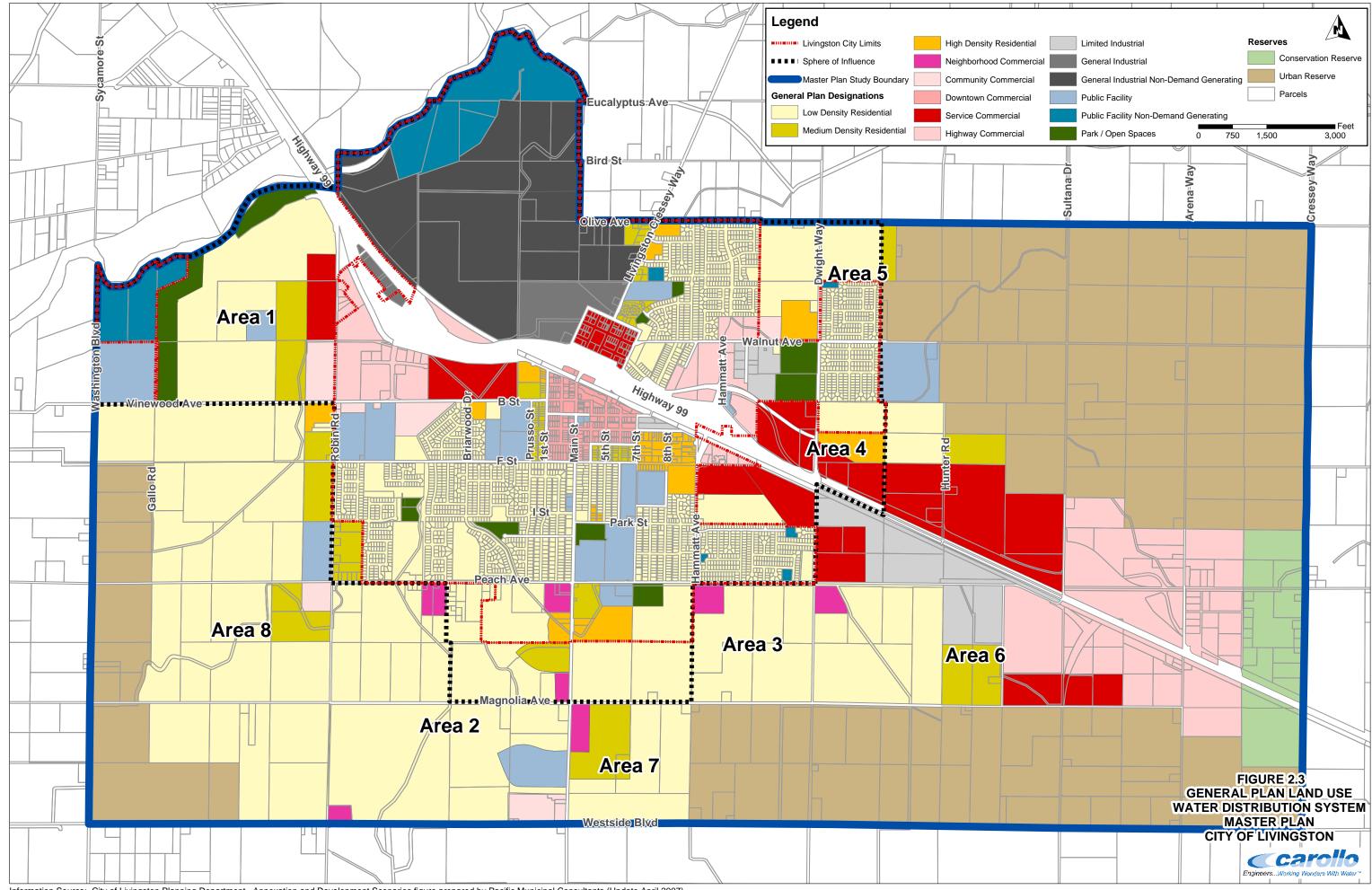
This report assumes that Areas 1 through 8 and the Urban Reserve represent the future wastewater collection system. The land use classifications used in this master plan are consistent with the City's General Plan (land use map updated April 2007) and the development assumptions for Areas 1 through 8 provided by PMC (Figure 2.3).

2.2 SOIL AND TOPOGRAPHY

The study area falls within the central San Joaquin Valley with the Sierra Nevada Mountain Range to the east and the California Coast Range to the west. The entire study area is flat alluvial terrain. The Merced River borders the City to the north.

2.3 CLIMATE

The City is characterized by an "inland Mediterranean" type climate; the winters are cool and humid and the summers are hot and dry. Historically, 95 percent of the precipitation has occurred between the months October and May. The historical average annual rainfall for Livingston is 10.3-inches, though over 20-inches of precipitation was experienced in 1998 due to the El Nino conditions for the western United States.


In the summer, temperatures average in the low 90 degrees Fahrenheit. In the winter, average high temperatures are in the 50s, but highs in the 30s and 40s can occur on days with persistent fog and low clouds. The average winter daily low temperature is 45 degrees.

2.4 LAND USE

The land use classifications used in this master plan are consistent with the following documents:

- The current Land Use Element (LUE) of the City's General Plan (land use map updated April 2007) as shown on Figure 2.3, and
- The development assumptions for Areas 1 through 8 and the Urban Reserve provided by PMC, as shown in Appendix A.

Table 2.1 summarizes the land use designations, along with the gross acreages (includes public right-of-way), for the City limits. Also provided in Table 2.1 are the land use designations and acreages for the eight expansion areas outside the City limits. The information for the eight areas was reproduced from tables provided by PMC.

	City Sewer Service Area			Expansion Areas Outside Current City Limits									
Land Use Designation	2006 (developed) Sewer Service Area ⁵ (gr. Ac.)	Current City Limits ^{1,2} (gr. Ac.)	% of Total Service Area (%)	Area 1 ^{3,4} (gr. Ac.)	Area 2 ^{3,4} (gr. Ac.)	Area 3 ^{3,4} (gr. Ac.)	Area 4 ^{3,4} (gr. Ac.)	Area 5 ^{3,4} (gr. Ac.)	Area 6 ^{3,4} (gr. Ac.)	Area 7 ^{3,4} (gr. Ac.)	Area 8 ^{3,4} (gr. Ac.)	Urban Reserve (gr. Ac.)	Total Master Plan Study Area (gr. Ac.)
Residential													
Low Density/Estate	483	776	45%	332	491	256	89	95	166	107	574	0	2,886
Medium Density	49	45	5%	49	33	0	0	10	74	40	48	0	300
High Density	50	74	5%	7	0	0	18	15	0	0	0	0	115
Commercial													
Downtown	62	59	6%	0	0	0	0	0	0	0	0	0	59
Neighborhood	1	9	0%	0	18	10	0	0	8	10	0	0	55
Community	4	19	0%	19	19	0	0	6	0	0	9	0	73
Service	29	59	3%	28	0	0	171	0	156	0	0	0	413
Highway	13	134	1%	5	0	0	0	0	382	0	0	0	522
Office	0	0	0%	0	0	0	0	0	0	0	0	0	0
Industrial													
Light	23	26	2%	0	0	0	29	0	92	0	0	0	147
General	46	55	4%	7	0	0	0	0	0	0	0	0	62
Other													
Public Facility Wastewater Generating	132	132	12%	10	27	0	40	0	0	0	19	0	228
Public Facility Non-Wastewater Generating	97	177	9%	90	0	0	0	0	0	0	0	0	267
General Industrial Non-Wastewater Generating	34	426	3%	0	0	0	0	0	0	0	0	0	426
Park/Open Space	42	52	4%	53	0	7	0	0	0	0	0	0	112
Urban Reserve	0	0	0%	0	0	0	0	1	0	0	1	2,227	2,230
Commercial Reserve	0	0	0%	0	0	0	0	0	155	0	0	0	155
tals	1,065	2,044	100%	601	587	274	346	127	1,035	157	652	2,227	8,050

5. Includes all developed lands within the City Boundary in June 2006.

Not all land within the City limit is developed. Table 2.1 tabulates the 2006 developed land within the City limits. The totals for developed land were employed in the calculation of wastewater generation coefficients discussed in this report.

The current City limits encompass approximately 2,044-acres. The existing land uses include 896-acres of residential, 279-acres of commercial, 507-acres of industrial, 52 acres of parks and 310-acres of public facilities. As with most cities in California, the detached single-family home is the predominant residential unit in Livingston. Currently, about 87 percent of the housing units are in the low-density category, while the medium and high densities make up five and eight percent each, respectively.

Low/Estate Density Residential. **(0-6 dwelling units/gross acre)**. The low-density residential category provides for a land use pattern of predominantly single-family development as permitted in the R-1 district. Lot sizes generally range from 6,000-8000 square feet. The estate sub-category is characterized by single-family residential development with large lot sizes. Lot sizes generally range between 8,500 12,000 square feet.

Medium Density Residential. (6.1-11.9 dwelling units/gross acre). This land use category provides for a land use pattern characterized predominantly by small-scale multiple-family residential developments. The typical residential pattern includes duplexes and large scale, high-amenity apartments.

High Density Residential. **(12-29 dwelling units/gross acre)**. The high-density residential land use category provides for the highest residential densities permitted in the City.

Downtown Commercial. This designation provides the City with a mixed-use activity in the downtown area. It is intended to provide for a wide range of uses and to promote feasibility and vitality of downtown.

Neighborhood Commercial. This designation provides for a maximum of 10-acre grouping of commercial establishments serving the everyday convenience goods and personal service needs of a defined neighborhood.

Community Commercial. This designation provides for no less than a 10-acre or larger grouping of commercial establishments serving needs similar to the neighborhood commercial centers, but serves a market area within ten miles.

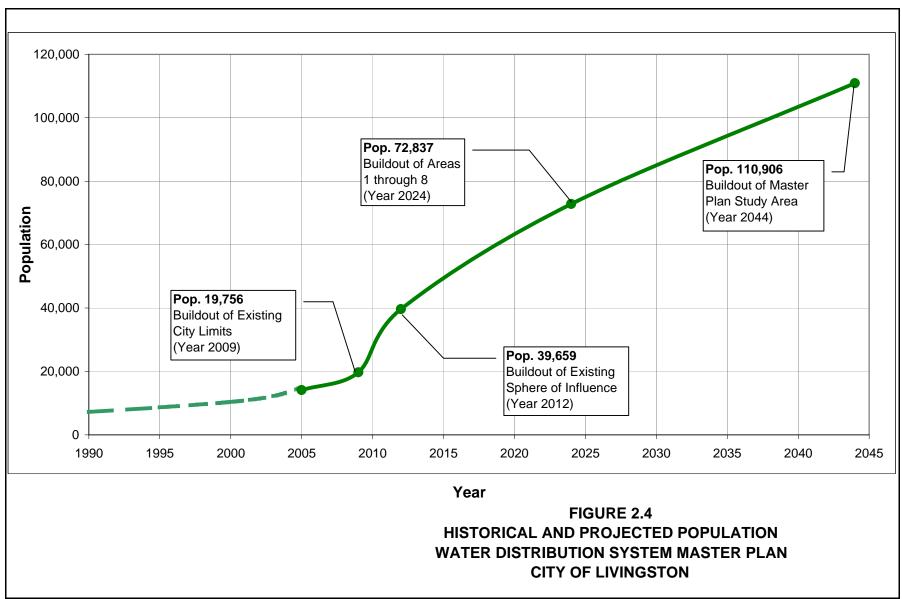
Service Commercial. This designates land for commercial activities in which the function performed is of equal or greater importance than the produce traded.

Highway Commercial. Allows Service Commercial uses which, due to space requirements, the proximity to the highway, or the distinctive nature of their operation, are not compatible with or not usually located in other commercial designations.

Light Industrial. This designation establishes light industrial areas where uses such as fabricating, assembly, research and development, electronics, low intensity warehousing and other such similar industrial uses are appropriate.

General Industrial. This designation allows for heavy industrial and a range of activities including manufacturing, wholesale distribution, large storage areas and other non-hazardous industrial uses. The industrial designated property located on the Merced River east of Highway 99 is limited to the existing wastewater treatment plant. No other industrial uses are permitted. The Industrial Reserve is within the Master Plan Study Boundary, but possesses urban service constraints.

Public Facility. This designation indicates areas owned and maintained by public or institutional agencies such as the city, schools, hospitals, or other special districts.


Parks and Open Space. This designation determines areas of permanent open spaces, parks and/or areas precluded from major development.

2.5 HISTORICAL AND FUTURE GROWTH

The City was incorporated in 1922 in a highly productive agricultural region. The City has continued to thrive as a farming and poultry processing community. According to the General Plan, Livingston is expected to be one of the fastest growing communities in the County in the next ten to fifteen years. After 2009 the City forecasts that its population will more than triple in size by year 2024.

Livingston, along with a number of the other communities in the region, has experienced population growth from commuters working in job centers outside the County. For the most part, this is a result of the eastward expansion of growth from the San Francisco Bay Area, which has raised housing prices in San Joaquin and Stanislaus County and created a need for some families to look for affordable housing. Additionally, the proposed University of California Merced will contribute to the accelerated growth.

The City's 2004 population was approximately 13,000. The most recent available population projections were developed by the City's Planning Department consultant PMC (Appendix A). The City forecasts that Livingston's population could reach approximately 19,800 in year 2009 and 72,800 in 2024 as illustrated in Figure 2.4.

Data Source: Population projections provided by Pacific Municipal Consultants, Land Use Assumptions, revised April 2007 (Appendix A).

PLANNING AND DESIGN CRITERIA

The City of Livingston's (City) water supply, storage, and distribution facilities were evaluated based on the analysis and design criteria defined in this chapter. Historical water consumption and production records were reviewed to determine the daily, monthly, and seasonal fluctuations experienced by the water system. The developed criteria address the water supply capacity, storage capacity, acceptable service pressures, distribution main performance, average annual water demand coefficients, and daily and hourly peaking factors.

3.1 WATER SUPPLY CAPACITY

In determining the adequacy of the water supply facilities, the source must be large enough to meet the varying water demand conditions, as well as provide sufficient water during potential emergencies such as power outages and natural or created disasters.

This study does not include an analysis of the groundwater aquifer yield, however the 2005 UWMP study assumes that future water supply capacity will continue to be extracted from groundwater wells.

Ideally, a water distribution system should be operated at a constant water supply rate with consistent supply from the water source.

3.1.1 Normal Production Capacity

In accordance with industry standard practices and the California Department of Health Services (DHS) criteria for "Adequate Source Capacity" on water supply, the source should be sized to serve the maximum day demand (MDD). On the day of maximum demand, as described above, it is desirable to maintain a water supply rate equal to the MDD rate. Water required for peak hour demand (PHD) or for fire flows would come from storage.

3.1.2 Standby Production Capacity

Standby production capacity is required for system reliability. Under normal operating conditions, it is possible that one or two of the City's wells can be placed out of service during MDD conditions due to equipment malfunction, for servicing, or for water quality concerns. The DHS criterion recommends counting the capacity of the largest well as out of service. According to the City's 2005 UWMP the City should have one or two standby wells with a combined capacity of 2.0 mgd. This surplus is required to mitigate the potential impact of lost production capabilities.

3.1.3 Recommended Supply Capacity

The adequate source of supply for the City will consist of groundwater wells with a firm capacity that can meet the MDD. The system's firm capacity is defined as the total capacity with the largest well out of service.

3.2 STORAGE REQUIREMENTS

The principle function of storage is to provide reserve supply of water for: 1) operational equalization, 2) fire reserve, and 3) emergency needs. Operational storage is directly related to the amount of water necessary to meet peak demands. The intent of operational storage is to provide the difference in quantity between the customer's peak demands and the system's reliable available supply. The volume of water allocated for emergency uses is decided based on the historical record of emergencies experienced, and on the amount of time which is expected to lapse before a hypothetical emergency can be corrected.

3.2.1 Operational Storage

This storage is the amount of desirable stored water in a system to regulate fluctuations in demand so that extreme variations will not be imposed on the source of supply. With operational storage, system pressures are improved and stabilized to better serve customers throughout the service area. Operational storage is commonly estimated between 25 percent and 50 percent of the MDD. This study recommends an operational storage equal to 25 percent of the City's MDD.

3.2.2 Fire Storage

This storage is the amount required when the capacity of the production facilities is insufficient to meet the necessary MDD plus fire flow demands for certain durations of time. The Insurance Service Office (ISO), a non-profit association of insurers that sets guidelines on which it evaluates the relative insurance risks in communities, recommends the provision of a fire flow rate of 3,500 gpm for a duration of 3 hours. This provision, equated to a storage requirement of 0.63 MG, will allow the water system to respond to hypothetical fires in residential, commercial, or industrial areas.

3.2.3 Emergency Storage

This storage is the volume recommended to meet demands during emergency situations such as pipeline failures, major trunk main failures, pump failures, electrical power outages, or natural disasters. The amount of emergency storage included within a particular water distribution system is an owner option, based on an assessment of risk, the desired degree of system dependability, economic considerations, and water quality concerns. In California, emergency storage is usually estimated at 50 to 100 percent of the MDD.

Until recently, historical data indicated a rarity of prolonged power outages in California cities, and thus groundwater aquifers were considered appropriate emergency storage, if pumping methods were reliable. Recent power shortages suggest a need to incorporate this capacity in aboveground storage tanks. Per direction from City staff, emergency storage volume equal to 50 percent of the City's MDD will be used.

3.2.4 Total Storage

The recommended minimum operational storage capacity for Livingston is equal to 25 percent of the maximum day water demand. Additionally, the recommended fire storage capacity will be equivalent to 0.63 MG. The recommended emergency storage is equal to 50 percent of the MDD. This criteria is further summarized with the following equation.

Qs = 25% MDD + Fire Flow + 50% MDD

where, Qs is the Total Required Storage, in gallons

MDD is the maximum day demand, in gallons

Fire Flow is equivalent to 0.63 MG

The City currently operates one ground level storage tank with a capacity of 1.0 MG.

3.3 SERVICE PRESSURES

Pressures maintained within distribution systems vary depending on City criteria and pressure zone topography. It is essential that the water pressure in a consumer's residence or place of business be neither too high nor too low. Low pressures, below 30 pounds per square inch (psi), cause annoying flow reductions when more than one water-using appliance is used. High pressures may cause faucets to leak and valve seats to wear out quickly. Additionally, high service pressures usually result in wasted water and high water utility bills. The Uniform Plumbing Code (UPC) requires water pressures not exceed 80 psi at service connections, unless the service is provided with a pressure-reducing device.

The American Water Works Association (AWWA) Manual on Distribution Network Analysis of Water Utilities (AWWA M-32), indicates that pressures between 30 psi and 90 psi are generally expected during the range of system water demands including: average day demand (ADD), MDD, maximum storage replenishment rate, and PHD. Based on Carollo experience with water system planning, it is recommended that a minimum pressure of 35 psi be maintained during the PHD, while a pressure of 40 psi be maintained during the MDD.

Another service pressure criteria is related to fire flows and was devised to ensure adequate positive pressure head for the booster pumps in the fire trucks. The fire pressure criteria requires a minimum acceptable residual pressure of 20 psi at the connecting hydrant used for fighting the fire.

3.4 DISTRIBUTION MAINS

Transmission grid mains are generally sized to carry the greater of 1) the PHD, or 2) the MDD plus fire flow. Other criteria related to the distribution piping include the maximum and minimum velocities and the maximum allowable friction losses.

High velocities may cause damage to the pipes and to their appurtenances. Normally, velocities of 10 feet per second (fps) (AWWA M-32), or higher, do not cause ill effects if they occur for a limited duration. It is normally good practice to become concerned when pipe velocities exceed 8 fps on a continuous basis.

As long as the maximum velocity criteria and the pressure criteria are not violated, high head loss by itself is not an important factor. However, it may be a warning that the pipe is nearing the limit of its carrying capacity, and may not have sufficient capacity to perform under stringent conditions. It is normally good practice to monitor pipes that have a head loss in excess of 10 feet per 1,000 feet (AWWA M-32).

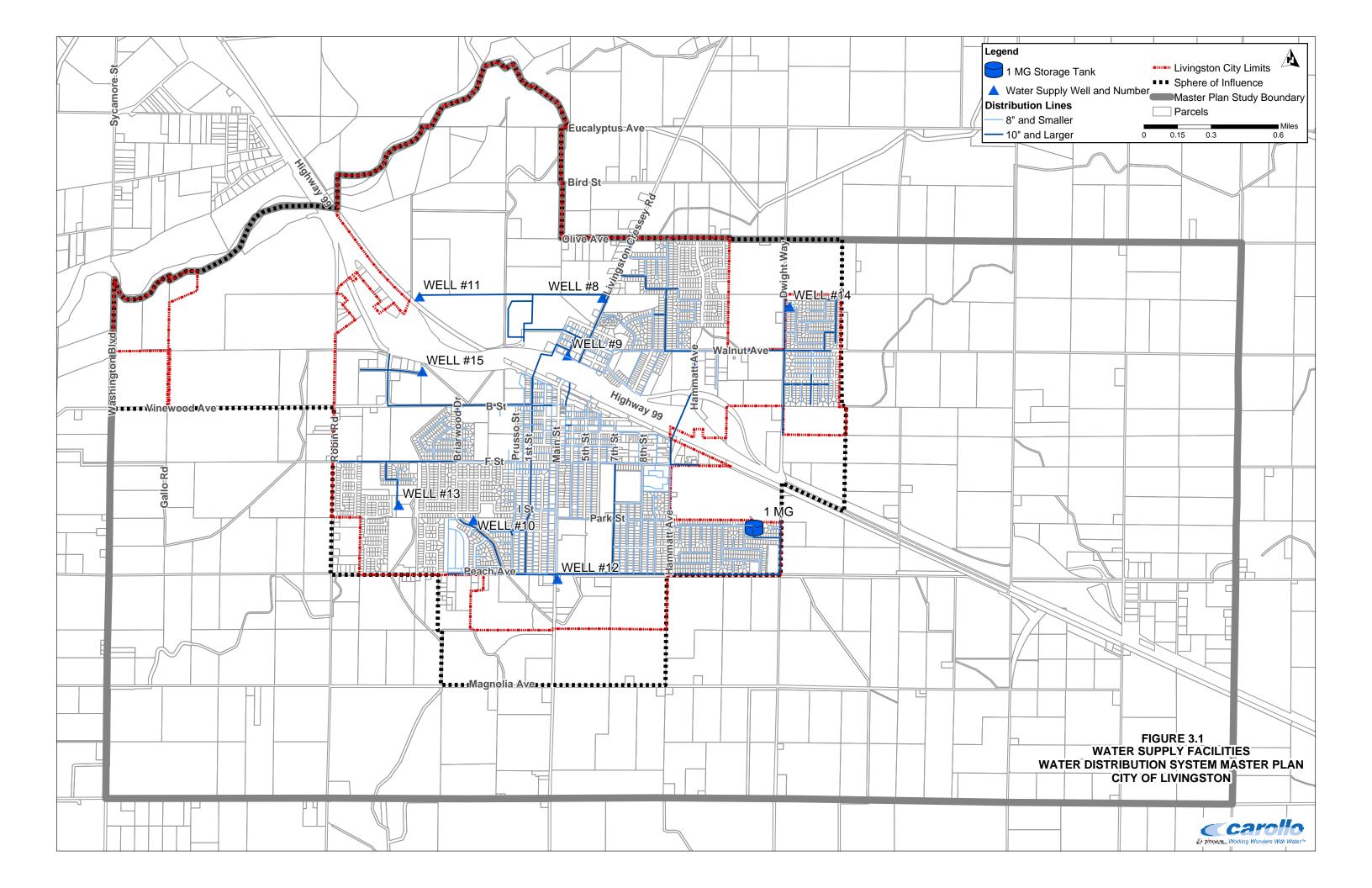

The roughness coefficients for calculating head loss in pipes will be based on industry standards for similar pipe materials and service age (Table 3.1).

Table 3.1	Pipe Roughness Water Distributio City of Livingsto	on System Ma				
				Age (Y	'ears)	
Pipe Materi	al O	10	20	30	40	50
Asbestos Cerr	nent 120	125	125	125	125	125
Cast Iron	120	110	100	90	80	70
Ductile Iron	130	125	120	115	110	105
Plastic (PVC)	140	140	140	140	140	140
Steel	130	120	110	100	90	80
pipes pipe	e = 0, the roughnes. Roughness coeff material. For plann pipes are assume	icients decreating purposes	ase with age , roughness	e at a rate t s of Asbest	that dependos Cement	ds on

3.5 HISTORICAL WATER USE

decrease by age.

Groundwater is currently the only source of water supply for Livingston. The City's municipal water system extracts its water supply from underground aquifers via eight active groundwater wells scattered throughout the City (Figure 3.1). Water is conveyed from the wells to the consumers via a distribution system with pipe sizes ranging between 2- and

16-inches in diameter. A 1.0 million gallon (MG) water storage tank currently provides the City's operational storage.

Table 3.2 lists the current capacities of the City's water supply wells, as rated in Well Data Sheets filed with the DHS. The City's current total supply capacity is approximately 7,600 gpm (10.8 MGD).

Table 3.2	Water Supply W Water Distribution City of Livingsto	on System M	aster Plan		
	Well Capacity ¹		Emergen	cy Supply Ca	apacity
Well No.	(gpm)	(MGD)	Emergency Generator	(gpm)	(MGD)
8	1,300	1.9	Yes	1,300	1.9
9	1,300	1.9			
12	1,400	2.0	Yes	1,400	2.0
11	1,000	1.4	Yes	1,000	1.4
12	1,000	1.4			
13	1,000	1.4			
14	1,000	1.4	Yes	1,000	1.4
15 ⁴	1,000	1.4	Yes	1,000	1.4
Total ³	7,600	10.8		5,700	8.1
Firm	6,300	8.9			

Notes:

1. Source: California Department of Health Services Fact Sheets.

2. Well No. 10 is on emergency mode due to high levels of nitrates (City staff Oct. 2003)

3. Well No. 10 not included in total or firm capacity.

4. Well No. 15 is not currently owned by the City.

3.5.1 Per-Capita Consumption

The per capita consumption rate is used for estimating the City's future water requirements, evaluating the adequacy of the supply source, and determining storage needs. The consumption rate, expressed in gallons per day per capita (gpcd), is applied to the projected population to yield future water requirements.

Historical Livingston residential per capita water use, based on dividing the residential/commercial customers' water use by the total population, ranged between 145 gpcd (1998) and 186 gpcd (1999). A distribution of demands between residential and

commercial use is not available, however City staff indicate that commercial water use is low in Livingston.

When the total City-wide production, including industrial users, is divided by the population, it yields a City-wide per capita water use that is significantly higher. The City-wide per capita water use for Livingston has ranged from 549 gpcd in 1998 to 628 gpcd in 1999. Table 3.3 shows the historical water requirements and per capita consumption from 1995 to 2006.

As the City grows and population increases, the City-wide percentage of industrial water use will decrease, resulting in a reduction in per capita water use. For planning purposes, a residential per-capita water use of 150 gpcd was applied to calculate the future residential and commercial water use for the planning horizon of 2024 and buildout of the Urban Reserve.

3.5.2 Seasonal Demands and Peaking Factors

Peaking factors represent the water use seasonal and daily variations, above or below the average annual water demand. The various peaking conditions are either statistical concepts or numerical values established through a review of historical data and are, at times, adjusted to reflect a level of conservatism.

Peaking conditions that are of particular significance to hydraulic analysis of the water system include the maximum month demand (MMD), MDD, and the PHD. Peaking factors for expressing these demands as a function of the ADD were developed based on the City's demand patterns. Monthly water production data for the past 3 years (2004-2006) were obtained from City Operations Staff, and are summarized in Table 3.4.

3.5.2.1 Maximum Month Demand

The MMD is the highest water demand during a calendar month of the year, usually occurring in Livingston during either June, July or August. The MMD peaking factor is expressed as a multiplier applied to the ADD, and is used primarily in the evaluation of supply capabilities. As shown in Table 3.4, the highest observed MMD peaking factor was 1.42. This factor in not used in this study.

Maximum Month Demand = 1.4 x Average Day Demand

3.5.2.2 Maximum Day Demand

The MDD is the highest water demand during a 24-hour period of the year. The MDD peaking factor is expressed as a multiplier applied to the ADD. Water system sources are typically sized to meet the anticipated MDD of a water system. Maximum day plus fire flows stress the water system in the specific area of the fire and often show existing deficiencies, if any, within the general area of the simulated fire. To evaluate the effect of maximum day plus fire flow is simulated at selected critical areas of the

Table 3.3Historical Water Requirements and Per Capita Consumption (1995-2006)Water Distribution System Master PlanCity of Livingston

						Historica	Water Pro	oduction				Historical
Year	Population ¹	Annu	al Product	ion ²		Monthly	Production	1		Daily Produc	tion	Per Capita
		(AF)	(mgy)	(gpm)	Average (mgm)	Maximum (mgm)	Month of Occur.	Max-to-Avg Ratio	Average (mgd)	Maximum ⁴ (mgd)	Max-to-Avg Ratio	Consumption (gpcd)
1995	8,700	5,558	1,811	3,446	150	220	June	1.47	5.0	n/a	n/a	570
1996	9,000	5,859	1,909	3,632	159	250	August	1.57	5.3	n/a	n/a	581
1997	9,300	6,129	1,997	3,799	166	242	August	1.46	5.5	n/a	n/a	588
1998	9,600	5,895	1,921	3,655	160	221	June	1.38	5.3	n/a	n/a	548
1999	10,000	7,037	2,293	4,363	191	270	July	1.41	6.4	n/a	n/a	628
2000	10,400	6,736	2,195	4,176	182	279	August	1.53	6.1	n/a	n/a	578
2001	10,800	6,834	2,227	4,237	185	263	June	1.42	6.2	n/a	n/a	565
2002	11,700	7,531	2,454	4,669	204	317	August	1.55	6.8	n/a	n/a	575
2003	12,600	5,969	1,945	3,701	166	231	July	1.39	5.5	n/a	n/a	423
2004	13,000	7,516	2,449	4,659	204	287	June	1.41	6.8	n/a	n/a	516
2005	14,135	7,659	2,496	4,748	208	277	July	1.33	6.9	10.2	1.5	484
2006	15,369	7,791	2,539	4,830	212	294	July	1.39	7.1	11.9	1.7	453

Notes:

1. Historical Population Source: California Department of Finance.

2. Annual production records for 1995 to 2003 provided by City staff (June 2004). Production Records for 2004-2006 provided by City Staff (June 2006)

3. Average production is based on the total annual production for that year.

4. Daily data not available before 2005.

		ivingston	ystem Mas				
		Daily Prod	luction	Peaking Factor	Monthly P	roduction	Peaking Facto
Month	Days	Average	Max	Max Day	Monthly	Percent	Month to
		Day	Day	to Average Day	Production	of Annual	Avg Month
		Duy	Duy	to Average buy	rioudotion	or Annual	Ang month
		(mgd)	(mgd)	Factor	(mgm)	(%)	Factor
				2004			-
January	31	4.23	n/a	n/a	131	7%	0.71
February	28	4.42	n/a	n/a	124	7%	0.67
March	31	5.61	n/a	n/a	174	10%	0.94
April	30	5.27	n/a	n/a	158	9%	0.85
May	31	8.23	n/a	n/a	255	14%	1.37
June	30	7.31	n/a	n/a	219	12%	1.18
July	31	6.90	n/a	n/a	214	12%	1.15
August	31	8.51	n/a	n/a	264	15%	1.42
September	30	6.54	n/a	n/a	196	11%	1.06
October	31	5.75	n/a	n/a	178	10%	0.96
November	30	5.86	n/a	n/a	176	10%	0.95
December	31	4.45	n/a	n/a	138	8%	0.74
				2005			
January	31	4.07	6.20	1.52	126	7%	0.61
February	28	5.23	7.04	1.35	147	8%	0.70
March	31	5.71	6.33	1.11	177	10%	0.85
April	30	6.71	7.97	1.19	201	11%	0.97
May	31	7.74	8.31	1.07	240	14%	1.15
June	30	8.40	9.10	1.08	252	14%	1.21
July	31	8.93	10.18	1.14	277	16%	1.33
August	31	8.39	9.36	1.12	260	15%	1.25
September	30	7.74	8.84	1.14	232	13%	1.12
October	31	7.59	8.56	1.13	235	13%	1.13
November	30	5.95	7.22	1.21	179	10%	0.86
December	31	5.49	6.49	1.18	170	10%	0.82
				2006			
January	31	5.50	7.59	1.38	170	10%	0.81
February	28	5.69	7.55	1.33	159	9%	0.75
March	31	5.49	7.62	1.39	170	10%	0.80
April	30	5.58	8.03	1.44	167	9%	0.79
May	31	7.91	10.14	1.28	245	14%	1.16
June	30	9.08	11.72	1.29	272	15%	1.29
July	31	9.49	11.33	1.19	294	17%	1.39
August	31	8.93	11.92	1.33	277	16%	1.31
September	30	8.05	9.83	1.22	241	14%	1.14
October	31	7.03	8.65	1.23	218	12%	1.03
November	30	5.46	8.48	1.55	164	9%	0.77
December	31	5.14	7.09	1.38	159	9%	0.75
	т г			Summary (2004 - 20			
			Daily Producti		Monthly P		Peaking Facto
		Average	Max	Max Day	Average	Max	Max Month
Year	Days	Day	Day	to AveDay	Month	Month	to-AvgDay
		(mgd)	(mgd)	Factor	(mgm)	(mgm)	Factor
2004	365	6.09	n/a	n/a	186	264	1.42
2005	365	6.83	10.18	1.49	208	277	1.33
2006	365	6.95	11.92	1.72	212	294	1.39

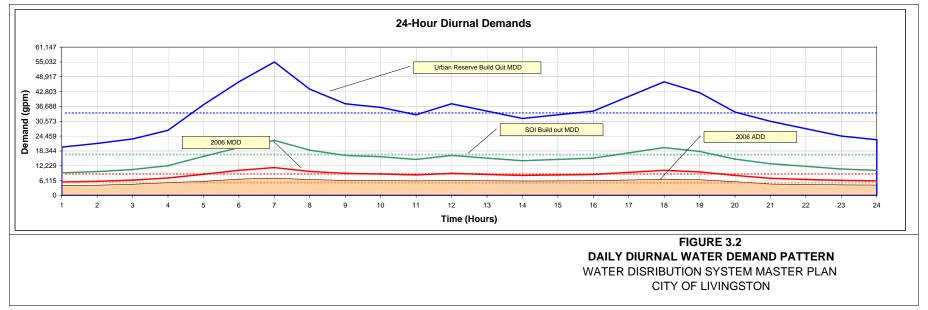
distribution system. Simulating maximum day plus fire flows also demonstrates the performance of supply sources, booster pumps, and storage tanks operating under stressful conditions.

In general, the MDD is 2.0 to 2.5 times greater than the average annual demand. In Livingston, with industrial customers accounting for approximately 70 percent of the total water use, the historical MDD has been reported at 1.5 times higher than the ADD, as documented in the 1993 Water System Master Plan. The historical 1.5 MDD factor described in the UWMP is a system wide peaking factor accounting for industrial and residential/commercial demands. When the City's industrial demands are not considered the MDD factor for the residential/commercial demands is 2.6. 2005 water demand projections indicate that when the industrial and residential/commercial demands are totaled, the system wide peaking factor is calculated at 1.7 for the current system. As the city grows and the percentage of residential development increases, the system wide peaking factor climbs to 2.2 at ultimate build out.

- Residential/Commercial Maximum Day Demand = 2.6 x Average Day Demand
- System Wide Maximum Day Demand = 1.7 x Average Day Demand (Current)
- System Wide Maximum Day Demand = 2.2 x Average Day Demand (Ultimate)

3.5.2.3 Peak Hour Demand

The PHD is the highest water demand during any one-hour period of the year. The PHD is expressed as a multiplier applied to the average annual demand. PHDs simulate high water use throughout the system during peak demands and identifies areas of the distribution system that experience low pressures.


This condition is similar to applying maximum day plus fire flow; only in this case, the entire system is exposed to stressful conditions. In general, the PHD ranges between 2.5 and 3.5 times greater than the average annual demand. As was the case with the MDD, if the City's industrial demands are not considered, the Residential/Commercial peaking factor is 4.4. In combination with the industrial demands, the system wide PHD factor is 2.4 for the current system. As the city grows and the percentage of residential development increases, the system wide peaking factor climbs to 3.7 at ultimate build out.

- Residential/Commercial Peak Hour Demand = 4.4 x Average Day Demand
- System Wide Peak Hour Demand = 2.4 x Average Day Demand (Current)
- System Wide Peak Hour Demand = 3.7 x Average Day Demand (Ultimate)

3.5.2.4 Daily Diurnal Pattern

In the absence of hourly production records, an hourly diurnal pattern was developed for this study using the recommended peaking factors. As stated earlier, the City's water use

Table 3.5	Wate	er Dis	rnal W stribut vingst	ion S																						
Demand												Time (Hours)												24-Hour	
Condition	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Average	
									I	Peaking	Factor	s														
Annual Average Day Residential/Commercial (ADD)	0.55	0.60	0.65	0.75	1.10	1.40	1.67	1.30	1.10	1.05	0.95	1.10	1.00	0.90	0.95	1.00	1.20	1.40	1.25	1.00	0.90	0.80	0.70	0.65	1.00	
Maximum Day Residential/Commercial (MDD)	1.44	1.57	1.70	1.97	2.88	3.67	4.38	3.41	2.88	2.75	2.49	2.88	2.62	2.36	2.49	2.62	3.14	3.67	3.28	2.62	2.36	2.10	1.83	1.70	2.62	
Industrial Demands(MDD)	1.00	1.00	1.10	1.25	1.25	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.25	1.00	1.00	1.00	1.00	1.25	
								2006	Water I	Demand	ls (gpm)													(gpm)	(MGD)
Annual Average Day Residential/Commercial (ADD)	878	958	1,038	1,198	1,757	2,236	2,667	2,076	1,757	1,677	1,517	1,757	1,597	1,437	1,517	1,597	1,917	2,236	1,997	1,597	1,437	1,278	1,118	1,038	1,595	2.3
Maximum Day Residential/Commercial (MDD)	2,302	2,511	2,720	3,139	4,603	5,859	6,988	5,440	4,603	4,394	3,975	4,603	4,185	3,766	3,975	4,185	5,022	5,859	5,231	4,185	3,766	3,348	2,929	2,720	4,179	6.0
Industrial Demands (MDD)	3,264	3,264	3,590	4,080	4,080	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,472	4,080	3,264	3,264	3,264	3,264	4,084	5.9
Total ADD (Industrial plus Residential)	4,142	4,222	4,628	5,278	5,837	6,708	7,139	6,548	6,228	6,149	5,989	6,228	6,069	5,909	5,989	6,069	6,388	6,708	6,468	5,677	4,701	4,542	4,382	4,302	5,679	8.2
Total MDD (Industrial plus Residential)	5,565	5,775	6,310	7,218	8,683	10,330	11,460	9,912	9,075	8,865	8,447	9,075	8,656	8,238	8,447	8,656	9,493	10,330	9,702	8,265	7,030	6,612	6,193	5,984	8,263	11.9
							Project	ed Dem	ands: S	phere o	of Influe	ence (gp	om)												(gpm)	(MGD)
Annual Average Day (ADD)	5,556	5,764	5,972	6,389	7,847	9,097	10,222	8,681	7,847	7,639	7,222	7,847	7,431	7,014	7,222	7,431	8,264	9,097	8,472	7,431	7,014	6,597	6,181	5,972	7,425	10.7
Maximum Day (MDD)	9,268	9,814	10,686	12,267	16,088	19,755	22,702	18,663	16,480	15,934	14,842	16,480	15,388	14,297	14,842	15,388	17,572	19,755	18,117	14,997	13,089	11,997	10,906	10,360	14,987	21.6
						Pr	ojected	Deman	ds: Urb	an Res	erve Bu	ild out ((gpm)												(gpm)	(MGD)
Annual Average Day (ADD)	9,673	10,250	10,826	11,979	16,014	19,472	22,584	18,319	16,014	15,437	14,284	16,014	14,861	13,708	14,284	14,861	17,166	19,472	17,743	14,861	13,708	12,555	11,402	10,826	14,846	21.4
Maximum Day (MDD)	19,945	21,455	23,298	26,818	37,389	46,850	55,005	43,830	37,789	36,279	33,259	37,789	34,769	31,749	33,259	34,769	40,810	46,850	42,320	34,369	30,515	27,495	24,475	22,965	34,335	49.4
Note: 1) Peaking Factors are multipliers applied to the average	ge annual d	emands																								

consists of 70 percent industrial and 30 percent residential/commercial demands. Due to this distribution of demands, separate factors were developed for residential/commercial and industrial uses. These peaking factors are shown in Table 3.5 and on Figure 3.1. Table 3.5 includes values for hourly demands during existing and projected MDD conditions. When the two demand patterns are added together an overall MDD Factor of 1.7 was obtained. These diurnal patterns will be used in the hydraulic computer model to perform 24-hour simulations for evaluating the capacity of the City's existing distribution system and for sizing improvement facilities.

3.6 AVERAGE ANNUAL WATER DEMAND COEFFICIENTS

The average annual water demand coefficients are factors, usually expressed in gallons per day per acre (gpdpa), applied to either gross or net acres for calculating the average water demands generated from a particular land use designation. Since some land uses require larger amounts of water than others do, an assessment of water consumption by land category provides a more accurate representation of water demands. The developed factors (Table 3.6) are based on a City-wide water balance for the developed land use acreages.

The water balance of 4,792 gallons per minute (gpm) (6.9 mgd) represents the year 2006 projected water production for the City. The 1993 Plan indicated that industrial customers (Foster Farms) account for about 70 percent of water demands, while commercial, residential, and institutional customers account for the remaining 30 percent.

3.7 PROJECTED WATER REQUIREMENTS

Based on the future trends in population provided by City staff, and the established per capita water consumption rate of 150 gpcd, the City's future water requirements were estimated and summarized in Table 3.7. In addition to the projected average demands, Table 3.7 includes annual estimates for the maximum day and PHDs, through the planning horizon year of 2024 and buildout of the Urban Reserve. Based on these projections, it is anticipated that the City's average day and maximum day requirements for 2024 will approach 15.7 mgd (10,903 gpm) and 33.2 mgd (23,050 gpm), respectively. For the buildout of the Urban Reserve, it is anticipated that the City's average day and maximum day requirements will approach 21.4 mgd (14,861 gpm) and 48.1 mgd (33,369 gpm), respectively.

3.8 PLANNING AND DESIGN CRITERIA SUMMARY

Table 3.8 provides a summary of the design criteria.

City of Livingston					
Land Use Designation	2006 (Developed) Water Service Area ¹	% of Total Service Area	Demand Coefficient	2006 ADD Balance	% of Total Demand
	(gr. Ac.)	(%)	(gpd/gr. Ac.)	(gpd)	(%)
Residential					
Low Density/Estate	483	45%	2,600	1,255,800	18%
Medium Density	49	5%	4,600	225,400	3%
High Density	50	5%	5,200	260,000	<u>4%</u> 25%
Commercial					
Downtown	62	6%	1,700	105,400	2%
Neighborhood	1	0%	1,700	1,700	0%
Community	4	0%	1,700	6,800	0%
Service	29	3%	1,700	49,300	1%
Highway	13	1%	1,700	22,100	0%
Office	0	0%	1,700	0	<u>0%</u> 3%
Industrial					
Light	23	2%	1,700	39,100	1%
General	46	4%	102,200	4,701,200	<u>68%</u> 68%
Other					
Public Facility Demand Generating	132	12%	2,000	264,000	4%
Public Facility Non-Demand Generating	97	9%	0	0	0%
General Industrial Non-Demand Generating	34	3%	0	0	0%
Park/Open Space	42	4%	500	21,000	0%
Urban Reserve	0	0%	0	0	0%
Commercial Reserve	0	0%	0	0	<u>0%</u> 4%
Totals	1.065	100%		6,951,800	100%

1. Includes all developed lands within the City Boundary in 2006.

able 3.7	Projected F Water Distr			•													
	City of Livi		oyotom	master	i iun												
									Proj	ected Water	Requirement	S					
Year ¹	Population ¹	Annual Growth	Annual	Avg. Month	Max. Month	Domestic Average Day	Industrial Average Day	Total Ave		Domestic Maximum Day	Industrial Max Day ¹⁰		imum Day ⁷	Domestic Peak Hour	Industrial Peak Hour	Total F	Peak Hour
		(%)	(MG)	(MGM)	(MGM)	(MGD)	(MGD)	(MGD)	(gpm)	(MGD)	(MGD)	(MGD)	(gpm)	(MGD)	(MGD)	(MGD)	(gpm)
2006	15,400	6.2%	2,551	213	276	2.3	4.7	6.9	4,792	6.1	5.9	11.9	8,265	10.1	6.4	16.5	11,479
2007	16,700	6.2%	2,630	219	285	2.5	4.7	7.1	4,931	6.6	5.9	12.4	8,620	11.0	6.4	17.4	12,072
2008	18,200	6.2%	2,712	226	294	2.7	4.7	7.4	5,139	7.2	5.9	13.0	9,030	12.0	6.4	18.4	12,756
2009	19,800	6.2%	2,800	233	303	3.0	4.7	7.6	5,278	7.8	5.9	13.6	9,466	13.0	6.4	19.4	13,486
2010	24,900	25.8%	3,079	257	334	3.7	4.7	8.4	5,833	9.8	5.9	15.6	10,858	16.4	6.4	22.8	15,813
2011	31,400	26.1%	3,435	286	372	4.7	4.7	9.3	6,458	12.3	5.9	18.2	12,632	20.6	6.4	27.0	18,779
2012	39,700	26.4%	3,889	324	421	6.0	4.7	10.6	7,361	15.6	5.9	21.5	14,897	26.1	6.4	32.5	22,566
2013	41,700	5.0%	4,035	336	437	6.3	4.8	11.0	7,639	16.4	6.0	22.4	15,547	27.4	6.6	34.0	23,592
2014	43,900	5.3%	4,156	346	450	6.6	4.8	11.3	7,847	17.3	6.0	23.3	16,148	28.8	6.6	35.4	24,596
2015	46,200	5.2%	4,281	357	464	6.9	4.8	11.7	8,125	18.2	6.0	24.2	16,775	30.4	6.6	36.9	25,645
2016	48,600	5.2%	4,413	368	478	7.3	4.8	12.0	8,333	19.1	6.0	25.1	17,430	31.9	6.6	38.5	26,740
2017	51,100	5.1%	4,550	379	493	7.7	4.8	12.4	8,611	20.1	6.0	26.1	18,113	33.6	6.6	40.1	27,88
2018	53,700	5.1%	4,692	391	508	8.1	4.8	12.8	8,889	21.1	6.0	27.1	18,822	35.3	6.6	41.9	29,06
2019	56,500	5.2%	4,845	404	525	8.5	4.8	13.2	9,167	22.2	6.0	28.2	19,586	37.1	6.6	43.7	30,34
2020	59,500	5.3%	5,010	417	543	8.9	4.8	13.7	9,514	23.4	6.0	29.4	20,405	39.1	6.6	45.7	31,71
2021	62,600	5.2%	5,179	432	561	9.4	4.8	14.1	9,792	24.6	6.0	30.6	21,251	41.1	6.6	47.7	33,12
2022	65,800	5.1%	5,355	446	580	9.9	4.8	14.6	10,139	25.9	6.0	31.9	22,125	43.2	6.6	49.8	34,58
2023	69,200	5.2%	5,541	462	600	10.4	4.8	15.1	10,486	27.2	6.0	33.2	23,053	45.5	6.6	52.0	36,13
2024	72,800	5.2%	5,738	478	622	10.9	4.8	15.7	10,903	28.6	6.0	34.6	24,035	47.8	6.6	54.4	37,78
2025	74,400	2.2%	5,825	485	631	11.2	4.8	15.9	11,042	29.2	6.0	35.2	24,472	48.9	6.6	55.5	38,51
2026	76,000	2.2%	5,913	493	641	11.4	4.8	16.2	11,250	29.9	6.0	35.9	24,908	49.9	6.6	56.5	39,24
2020	70,000	2.2%	6,001	493 500	650	11.4	4.8	16.4	11,389	30.5	6.0	36.5	24,900 25,345	49.9 51.0	6.6	57.6	39,24
									-				-				
2028	79,200	2.1%	6,088	507	660	11.9	4.8	16.6	11,528	31.1	6.0	37.1	25,782	52.0	6.6	58.6	40,70
2029	80,900	2.1%	6,181	515	670	12.1	4.8	16.9	11,736	31.8	6.0	37.8	26,246	53.2	6.6	59.7	41,47
2030	82,600	2.1%	6,274	523	680	12.4	4.8	17.1	11,875	32.5	6.0	38.5	26,710	54.3	6.6	60.8	42,25
2031	84,400	2.2%	6,373	531	690	12.7	4.8	17.4	12,083	33.2	6.0	39.2	27,201	55.5	6.6	62.0	43,07
2032	86,200	2.1%	6,471	539	701	12.9	4.8	17.7	12,292	33.9	6.0	39.9	27,692	56.6	6.6	63.2	43,89
2033	88,000	2.1%	6,570	548	712	13.2	4.8	18.0	12,500	34.6	6.0	40.6	28,183	57.8	6.6	64.4	44,71
2034	89,900	2.2%	6,674	556	723	13.5	4.8	18.2	12,639	35.3	6.0	41.3	28,702	59.1	6.6	65.6	45,58
2035	91,800	2.1%	6,778	565	734	13.8	4.8	18.5	12,847	36.1	6.0	42.1	29,220	60.3	6.6	66.9	46,45
2036	93,700	2.1%	6,882	574	746	14.1	4.8	18.8	13,056	36.8	6.0	42.8	29,739	61.6	6.6	68.1	47,31
2037	95,700	2.1%	6,992	583	757	14.4	4.8	19.1	13,264	37.6	6.0	43.6	30,285	62.9	6.6	69.5	48,23
2038	97,800	2.2%	7,107	592	770	14.7	4.8	19.4	13,472	38.4	6.0	44.4	30,858	64.3	6.6	70.8	49,18
2038	99,800	2.2 %		601	782	15.0	4.8	19.4	13,681	39.2	6.0	45.2	,	65.6	6.6	70.0	50,10
			7,216		782	15.0	4.8	20.1			6.0		31,404	67.0		73.6	
2040	102,000	2.2%	7,337	611			-	-	13,958	40.1		46.1	32,004		6.6		51,10
2041	104,100	2.1%	7,451	621	807	15.6	4.8	20.4	14,167	40.9	6.0	46.9	32,577	68.4	6.6	75.0	52,06
2042	106,300	2.1%	7,572	631	820	15.9	4.8	20.7	14,375	41.8	6.0	47.8	33,178	69.8	6.6	76.4	53,06
2043	108,600	2.2%	7,698	641	834	16.3	4.8	21.0	14,583	42.7	6.0	48.7	33,805	71.4	6.6	77.9	54,11
2044	110,900	2.1%	7,824	652	848	16.6	4.8	21.4	14,861	43.6	6.0	49.6	34,433	72.9	6.6	79.4	55,16

Existing City 2006/2007, population at 15,400 Buildout of Existing City Limits in 2009 at 19,756 Buildout of Existing Sphere of Influence in 2012 at 39,659

Buildout of Areas 1-8 in 2024 at 72,837

Buildout of Master Plan Study Area in 2044 at 110,906

2. Projected Per Capita Consumption is estimated at 150 gpdc.

3. Average Annual Demand is based on the total annual production.

4. The Peaking Factors are multipliers applied to the Average Annual Demand, to yield Maximum Month, Maximum Day, and Peak Hour Demands.

5. Average Day Demand is based on the Annual Demand, expressed in daily units.

6. Maximum Month Demand (highest monthly demand), is calculated by applying a multiplier of 1.7 to the Average Day Demand.

7. Maximum Day Demand (highest daily demand), is calculated by applying a multiplier of 2.62 to the Residential/Commercial Average Day Demand plus 1.25 times the Industrial Demand.

Peak Hour Demand (highest hourly demand), is calculated by applying a multiplier of 4.8 to the Residential/Commercial Average Day Demand plus 1.37 times the Industrial Demand.
 Average Day Demands are based on 150 gpdc residential plus industrial demands which increased from 4.5 mgd in 2000 to 4.8 mgd in 2020

10. Industrial Max Day from industrial water meter records.

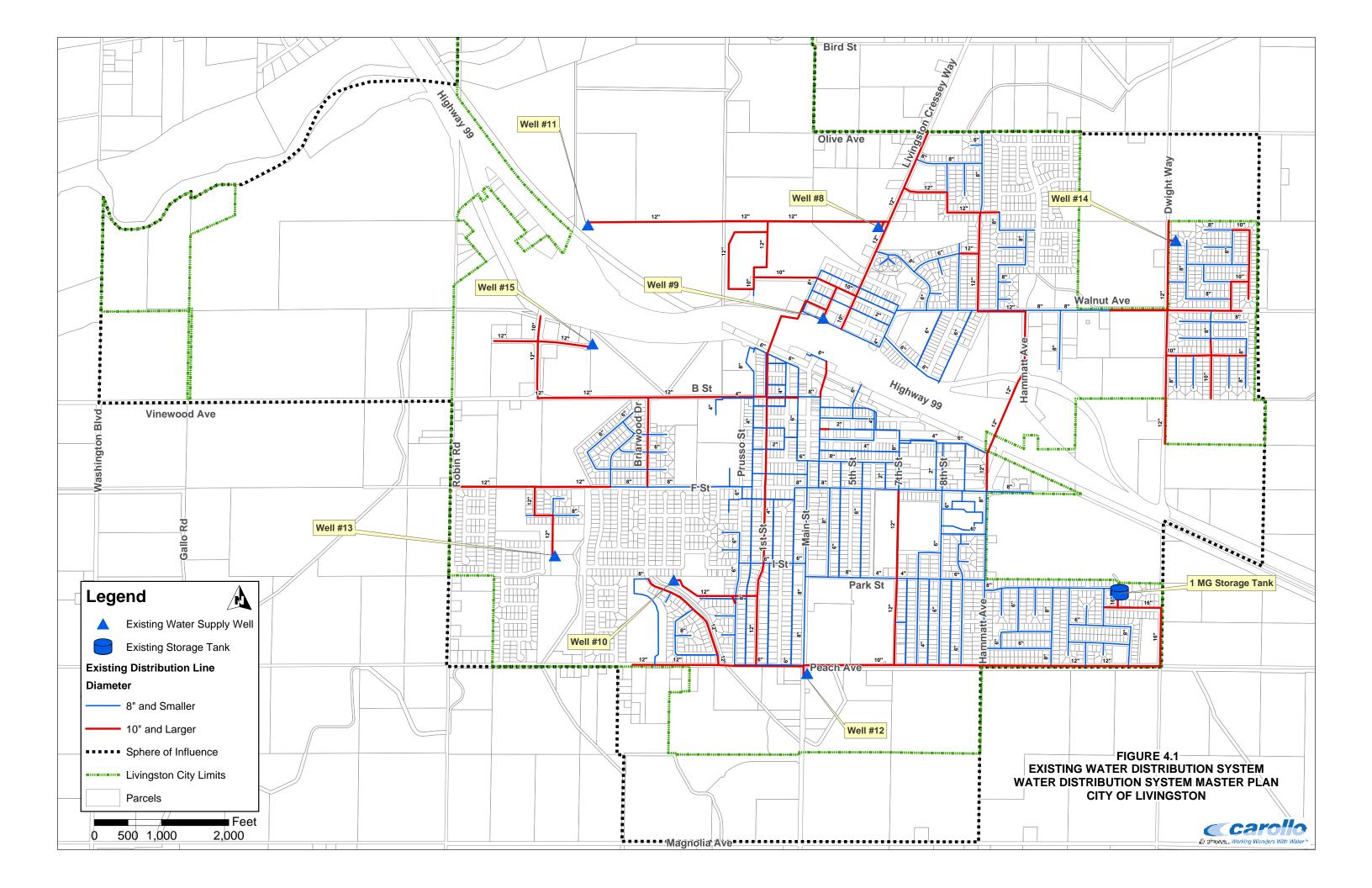
Table 3.8 Planning and De Water Distributio	on System Ma						
City of Livingsto							
		of Supply		1. 1000			
he adequate source of supply is required to me	et:	Maximum L	ay Demar	nd + 1300 gpr	n.		
	St	orage					
The adequate storage shall meet:			Storage =	= 25% of Maxi	mum Day I	Demand	
		Fire Storage	e = 0.63 M	IG			
		Emergency	Storage =	50% Maximu	ım Day Dei	mand	
	Distrib	ution Mains					
The distribution system should be sized to meet t		Peak Hour	Demand, o	or			
·	•	Maximum D	ay Demar	nd + Fire Flow			
Criteria for judging the adequacy of existing pipel	lines:	Maximum d	esirable p	ipeline velocit	v: 10 feet n	er second	
should be judging the adoquaty of oxiding piper				ead loss: 10 f			
		n Existing Pip	es				
leadloss in pipes shall be calculated based on th	he following table:						
				Age (Years)			
Pipe Material		0	10	20	30	40	50
Asbestos Cement		125	125	125	125	125	125
Cast Iron		120	110	100	90	80	70
Ductile Iron		130	125	120	115	110	105
Plastic (PVC)		140	140	140	140	140	14(
Steel		130	120	110	100	90	80
	Service	Pressures					
The recommended high/low pressures are as foll	lows:	Maximum F					80 psi
				uring Maximu			40 psi
				uring Peak Ho	,		35 psi
		Minimum R	esidual Pr	essure (during	g Fires) =		20 psi
	Water Use	Peaking Fact	ors				
Fluctuations in water demands shall be based	Maximum Month		013			ge Day Der	mand
	Maximum Day De		al/Comme			ge Day Der ge Day Der	
011.	Maximum Day De					ge Day Der ge Day Der	
	Maximum Day De		nue) –			ye Day Dei	
	Peak Hour Deman		ommercia	l) = 4	14 x Avera	de Dav Der	nand
	Peak Hour Demar Peak Hour Demar	nd (Residential/C				ge Day Der ge Day Der	
	Peak Hour Demar	nd (Residential/C nd (System Wide) =				
Demand forecasting shall be based on:		nd (Residential/C nd (System Wide) = ption	· :			
-	Peak Hour Demar	nd (Residential/C nd (System Wide ater Consum City-Wide) = ption = 150 gpd	ic			
A	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients		2.4 x Avera		
A These demand coefficients are applied to the gro	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	ic s tter demands:	2.4 x Avera	ge Day Der	
A	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	lc s uter demands:	2.4 x Avera	ge Day Der	mand
A These demand coefficients are applied to the gro Land Use Category	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	ic s iter demands: C (gpd/acre)	2.4 x Avera	ge Day Der	mand
At These demand coefficients are applied to the groun Land Use Category Low Density/Estate	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c s tter demands: <u>(gpd/acre)</u> 2,600	2.4 x Avera	ge Day Der (gpm/acre) 1.81	mand
At These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c s tter demands: <u>(gpd/acre)</u> 2,600 4,600	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19	mand
A These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c tter demands: (gpd/acre) 2,600 4,600 5,200	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61	mand
A These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c s tter demands: (gpd/acre) 2,600 4,600 5,200 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18	mand
A These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c s tter demands: (gpd/acre) 2,600 4,600 5,200 1,700 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18	mand
A These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	(gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.61 1.18 1.18 1.18 1.18	mand
A These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c tter demands: (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18	mand
Art These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	(gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.61 1.18 1.18 1.18 1.18	mand
Art These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c tter demands: (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18	mand
Art These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c tter demands: (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18	mand
Art These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing)	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c tter demands: (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	mand
A These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing) Public Facility Demand Generating	Peak Hour Demar Per Capita Wa verage Annual	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	C (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,200 2,000	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	mand
A These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial Limited Industrial General Industrial Generating Public Facility Demand Generating Public Facility Non-Demand Generating	Peak Hour Demar Per Capita Wa verage Annual iss land use acreag	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	C (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,2,200 2,000 0	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	mand
Ar These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial Service Commercial General Industrial Generating Public Facility Demand Generating Public Facility Non-Demand Generating General Industrial Non-Demand Generating	Peak Hour Demar Per Capita Wa verage Annual iss land use acreag	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	c s tter demands: (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 0,00 0 0 0	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.097 1.39 0.00 0.00	mand
Ar These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial Service Commercial General Industrial General Industrial (existing) Public Facility Demand Generating Public Facility Non-Demand Generating General Industrial Non-Demand Generating Park/Open Space	Peak Hour Demar Per Capita Wa verage Annual oss land use acreag	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe) = ption = 150 gpd fficients	C (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,2,200 2,000 0	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	mand
Ar These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial General Industrial General Industrial (existing) Public Facility Demand Generating Public Facility Non-Demand Generating Seneral Industrial Non-Demand Generating Park/Open Space	Peak Hour Demar Per Capita Wa verage Annual ss land use acreag	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe les to yield avera) = ption = 150 gpd fficients	C (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,02,200 0 0 500	2.4 x Avera	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	mand
Art These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing) Public Facility Demand Generating Density Non-Demand Generating Seneral Industrial Non-Demand Generating Park/Open Space Industrial Reserve Non-Demand Generating	Peak Hour Demar Per Capita Wa verage Annual ss land use acreag	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe les to yield avera) = = 150 gpd <mark>fficients</mark> ge day wa	c tter demands: (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 0,00 0 500 0 0	oefficients	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	nand
Ar These demand coefficients are applied to the gro Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Service Commercial Service Commercial Limited Industrial General Industrial (existing) Public Facility Demand Generating Public Facility Non-Demand Generating Servical Constrained Service Public Facility Non-Demand Generating Park/Open Space Industrial Reserve Non-Demand Generating Industrial Reserve Non-Demand Second Reserve Non-Demand Second Reserve Non-Demand Second Reserve Non-Demand Reserve Non	Peak Hour Demar Per Capita Wa verage Annual ss land use acreag	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe les to yield avera es to yield avera) = = 150 gpd fficients ge day wa	C (gpd/acre) 2,600 4,600 5,200 1,700 0 0 0 0 0 0 1,200 gg	oefficients	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.39 1.39 0.00 0.00 0.35 0.35 ration of 2 f	nours
Art These demand coefficients are applied to the groun Land Use Category Low Density/Estate Medium Density High Density Downtown Commercial Neighborhood Commercial Highway Commercial Community Commercial Community Commercial Service Commercial Limited Industrial General Industrial (existing) Public Facility Demand Generating Density Non-Demand Generating Seneral Industrial Non-Demand Generating Park/Open Space Industrial Reserve Non-Demand Generating	Peak Hour Demar Per Capita Wa verage Annual ss land use acreag	nd (Residential/C nd (System Wide ater Consum City-Wide Demand Coe les to yield avera) = = 150 gpd fficients ge day wa ge day wa re flow = ire flow =	C (gpd/acre) 2,600 4,600 5,200 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,200 2,500 2,500	oefficients	ge Day Der (gpm/acre) 1.81 3.19 3.61 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1	nand

EXISTING SYSTEM AND HYDRAULIC MODEL

This chapter presents an overview of the City's water supply, distribution, and storage facilities, and gives a description of existing system. This chapter also describes the development and calibration of the City's Water Distribution Hydraulic Model.

4.1 SYSTEM OVERVIEW

Livingston provides potable water service to its residential, commercial, industrial, and institutional customers within the City limits. The City's municipal water system extracts water from the underground aquifers via a series of groundwater wells distributed throughout the City. The City's water system facilities include eight active groundwater wells, a 1.0 MG potable water storage tank, and over 36 miles of pressured pipes ranging from 2- to 16-inches in diameter (Figure 4.1).


4.1.1 Supply Capacity

The City relies on groundwater to meet its supply needs. According to the 2000 Urban Water Management Plan, feasible alternative sources do not exist within or nearby the study area. The City must rely on the underlying groundwater basin as an expanding source for future water supply. In 2005 a study was conducted to investigate the groundwater conditions within the master plan boundary (2005 Groundwater Report). Detailed descriptions of the current groundwater conditions can be found in the 2005 Groundwater Report Located in Appendix A.

Table 4.1 lists the capacities of the existing eight-groundwater supply wells, as rated by City staff and documented in maintenance records. The active wells have a current supply capacity of approximately 10.8 mgd (7,500 gpm). The firm capacity, which is defined as the total capacity less one of the largest wells out of service, is approximately 8.9 mgd. Table 4.1 also shows the system's emergency supply capabilities. Currently, Well No. 10 is non-operational due to high nitrate levels and City staff has indicated that it is not planning to use the well in the future. The City's water system has no current interconnections to any other water system.

4.1.2 Storage Reservoirs

Storage is provided for equalization, fire flow requirements, and emergencies, as defined in the City's planning criteria. The total capacity of the City's existing storage reservoir is 1 MG. This storage tank is located in the southeastern portion of the City and the end of Burgundy Drive west of Dwight Avenue.

4.2 HYDRAULIC MODEL

Hydraulic network analysis is a powerful tool used in all aspects of water distribution planning, design, operation, management, emergency response, system reliability analysis, fire flow capacity evaluation, as well as water quality simulations. The City's hydraulic model (Figure 4.2) was developed to evaluate the adequacy of the existing distribution system and in planning future facilities.

Table 4.1	Water D		ater Supply Cap System Maste			
	Well (Capacity ¹		Emergency	Supply C	apacity
Well No.	(gpm)	(MGD)	Status	Emergency Generator	(gpm)	(MGD)
8	1,300	1.9	Operational	Yes	1,300	1.9
9	1,300	1.9	Operational			
10 ³	1,400	2.0	Emergency ²	Yes	1,400	2.0
11	1,000	1.4	Operational	Yes	1,000	1.4
12	1,000	1.4	Operational			
13	1,000	1.4	Operational			
14	1,000	1.4	Operational	Yes	1,000	1.4
15 ⁴	1,000	1.4	Operational	Yes	1,000	1.4
Total	7,600	10.8			5,700	8.1
Firm	6,300	8.9				

Notes:

- 1. Source: City Staff July 2005.
- 2. Well No. 10 is in emergency mode due to high levels of nitrates (City Staff October 2003).
- 3. Not included in Total or Firm capacity.
- 4. Well No. 15 is not currently owned by the City.

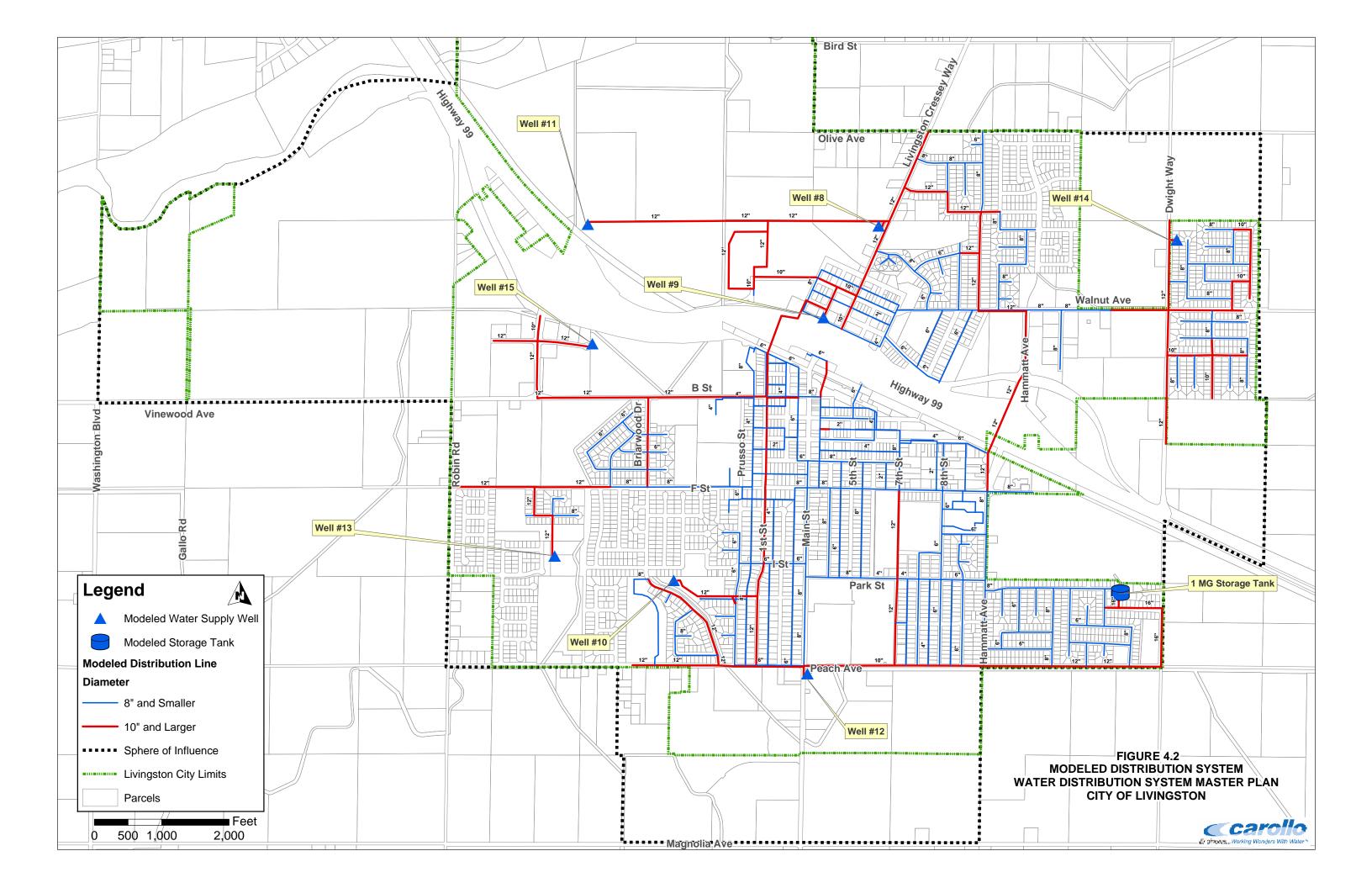
4.2.1 Data Collection and Validation

Data necessary for the development of the hydraulic model were collected from City engineering and operational staff. The data included improvement plans and hard copies of the City's distribution system maps, which were used as the background for constructing the distribution system piping. The data validation process included a review by City engineering, operation, and field maintenance staff of the City's existing water plat maps. City staff comments were compared and used to update the developed computer hydraulic model. System operational data were collected from City staff familiar with the day-to-day operation of the water system.

Historical water production data, were obtained and summarized. Current land use information was based on a map obtained from the City's General Plan.

4.2.2 Elements of the Hydraulic Model

The City's hydraulic model combines information on the physical and operational characteristics of the water system, and performs calculations to solve a series of mathematical equations to simulate flows in pipes and pressures at nodes. Elements comprising the computer modeling process are: skeletonizing the water system, defining pipes and nodes, and allocating water demands.


4.2.2.1 Skeletonizing

Skeletonizing is the process by which water networks are stripped of pipelines not considered essential for the intended analysis purpose. The purpose of skeletonizing a system is to develop a model that accurately simulates the hydraulics of the pipelines delivering water through the system. At the same time, skeletonizing should reduce the complexity of the large model, minimizing the time of analysis, and comply with the limitations imposed by the computer program.

In Livingston's case, an effort was made to digitize a majority of the existing distribution pipes, including pipe sizes that are 4-inches in diameter in addition to a large number of critical 2-inch diameter pipes.

4.2.2.2 Pipes and Nodes

Computer modeling requires gathering detailed numerical information on the physical characteristic of the modeled water system, such as pipe sizes (diameters), lengths, and general system geometry.

Pipes and nodes represent the physical elements describing the water network. A node represents a location in the network where a demand can be applied or water supplied to the system, while a pipe segment represents the actual transmission or distribution pipe itself. Pump performance curve data, defining the operation of the existing pumps and booster stations, were also incorporated in the computer model.

4.2.2.3 Demand Allocation

Allocating water demands to appropriate nodes in the hydraulic model was accomplished in several steps that included an analysis of City-wide land use distribution and review of historical water production records. Water service areas tributary to junction nodes were delineated and the resulting demand calculated by applying land use water coefficients developed in a previous chapter. The resulting total model demands matched the total projected annual demand for the year 2004. Variations to the average demand (maximum day demand and peak hour demand), which were also developed and discussed in a previous chapter, were applied to the model for simulating high demand conditions.

Future water demands through the planning horizon of 2024 and buildout of the Urban Reserve were calculated based on the population projections defined in a previous chapter, and adjusted to reflect the addition of anticipated developments.


4.2.3 Hydraulic Model Calibration

The City's hydraulic model was calibrated to establish a level of confidence in the pressures and flows that it simulates. Calibration is complicated by the fact that some data are known and unchanging; some are variable over time, while others are estimated.

Pipe information such as diameter, lengths, and location are known. Pump rates and discharge pressures vary over time to respond to variations in consumption. Calibration can be performed for either steady-state or extended-period simulation. Calibration with the extended-period simulation is more difficult than the steady-state calibration and will have a lesser degree of accuracy.

Calibration with steady-state simulation is usually performed on field data that should be collected during the peak hour demand condition. All of the hydrant tests were completed on October 8 and 9, 2003. City staff completed the hydrant tests necessary for the calibration task. The hydrant test locations are shown on Figure 4.3.

In excess of one hundred (100) modeling runs were performed during the calibration process of Livingston's water hydraulic model. During the calibration, values obtained from the hydrant flow tests were compared to model simulations. The calibration effort yielded a reasonable difference between the field tests and model simulated pressures.

The calibrated model serves as an established benchmark for further analysis and evaluation. Pressure and flow values from subsequent analysis included modifications to the calibrated benchmark model by simulating other water consumption patterns, operating scenarios, or additional facilities. Table 4.2 lists the Hydrant Test Locations.

Table	4.2 Fire Hydrant Test Locations Water System Engineering Fe City of Livingston	easibility Stu	ıdy	
Test No.	Location Description	Ground Elev (ft)	SHGL (ft)	Model Junction No.
1	Hammet between F Street and Park Street	130	247	284
2	F Street and Seventh Street	130	257	204
3	Peach Ave. at the Monte Cristo Development	130	280	896
4	Winton Parkway and B Street	125	270	578
5	Corner of B Street and First Street	125	272	454
6	Walnut Avenue and Olds Avenue	130	282	330
7	Walnut Avenue and Dwight Avenue	135	262	1
8	In front of Deli Plant on Foster Farms Property	130	277	364
9	On Cressy Way just north of Harvest Avenue	130	273	60
10	Peach Avenue and Amaretto Street	130	259	684

EVALUATION AND PROPOSED IMPROVEMENTS

This chapter provides a discussion of the existing system deficiencies, recommends proposed improvements to mitigate deficiencies based on the design criteria discussed in the previous chapters.

5.1 SUPPLY CAPACITY

The City's total and firm supply capacity, from the existing eight groundwater wells is estimated at 10.8 mgd and 8.9 mgd, respectively. The City-wide supply analysis indicates that the current MDD is approximately 11.9 mgd.

Assuming the existing wells will remain in service and at their current capacities, the total recommended increase in the source of supply is 4.0 mgd. It is recommended that the City construct two new wells, with an approximate individual average capacity of 2.0 mgd (approximately 1,400 gpm). This increase will provide enough capacity to meet existing MDDs with one well out of service.

The analysis (Table 5.1) also estimates future demands based on the population projections based on PMC planning projections (April 2007). The population increases are estimated to reach 24,900 in 2010, 46,200 in 2015, and 72,800 in 2024. For each staged planning period, the table also summarizes the required corresponding supply capacity: 16.4 mgd in 2010, 24.8 mgd in 2015, and 34.6 in 2024.

Assuming the existing wells will remain in service at their current capacities, the total recommended increase in the source of supply through 2024 is 26 mgd (total recommended supply less 2007 available total supply). It is recommended that the City construct 13 new wells by 2024, two of which to mitigate existing deficiencies. The City's Urban Water Management Plan (UWMP) addresses the additional water supply based on the operational conditions and availability of recharge water.

The total recommended increase in the source of supply at buildout of the Urban Reserve is 16 mgd (total recommended supply less 2024 available total supply). It is recommended that the City construct eight new wells to provide supply for the Urban Reserve area.

Please note that this analysis, consistent with established planning criteria, assumes that peak hour demands will be supplied by storage reservoirs. Should the storage upgrades described in this master plan be delayed, additional groundwater wells need to be constructed to meet the peak hour demand requirements. If storage has not been added by 2010, two additional groundwater wells will need to be constructed to meet the peak hour demands for that year. These two wells would be in addition to the wells proposed to meet the maximum day demand condition. Also, some wells in the distribution system may not

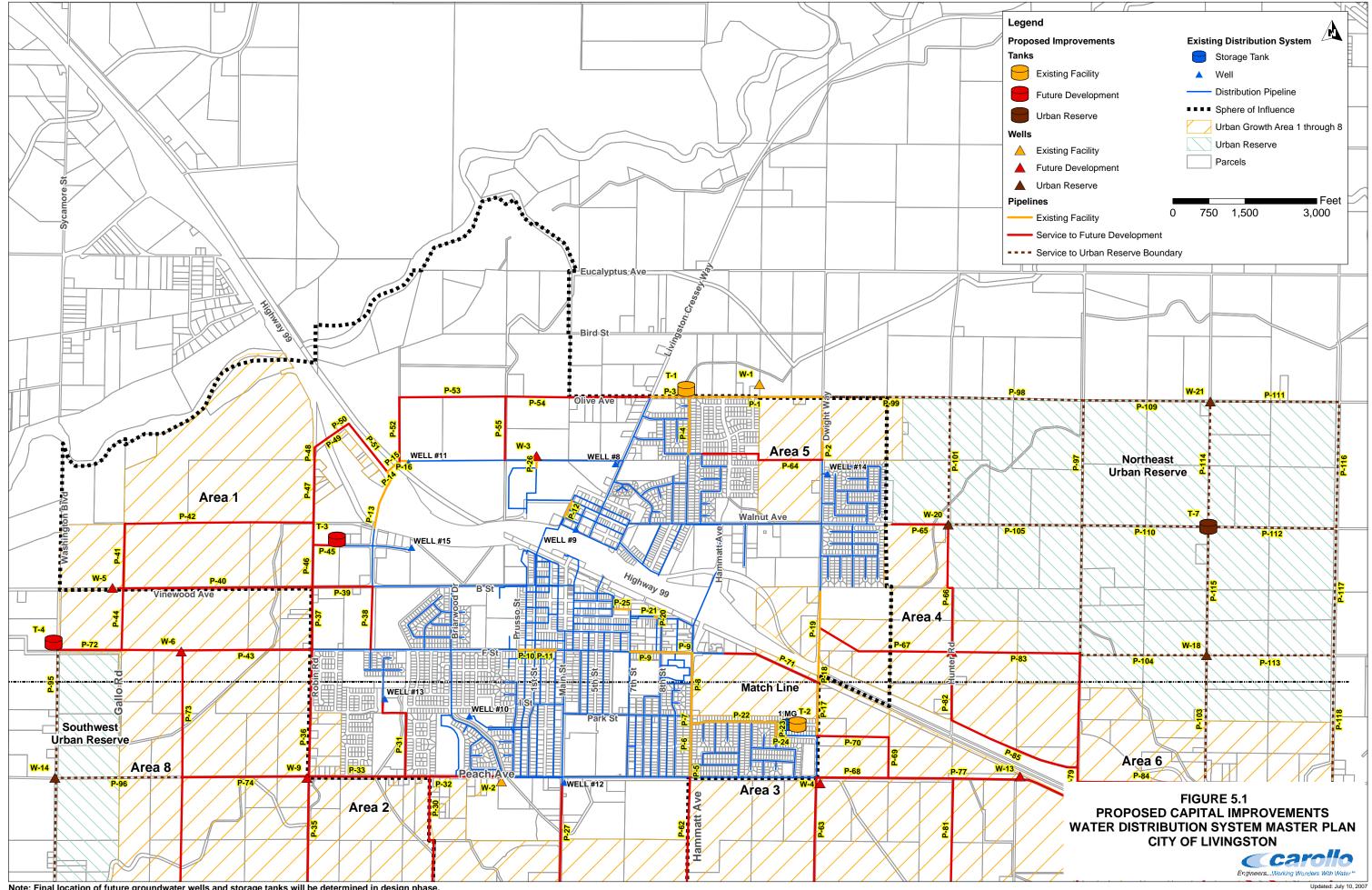
Supply and Storage	Criteria	2007	2010	2015	2024	204
1. Population Forecasting						
City Sphere of Influence		16,700	24,900	46,200	72,800	110,9
2. Projected Demands		(MGD)	(MGD)	(MGD)	(MGD)	(MG
a. City Wide Average Day Demands	Per Capita Consumption: 150 gpcd + Industrial Demands	7.2	8.4	11.7	15.7	21.
b. Industrial Demands	NDD 4.05/(advertice) Demonstration (Operational Structure)	4.7	4.7	4.8	4.8	4.8
c. City Wide Maximum Day Demands d. City Wide Peak Hour Demands	MDD = 1.25(Industrial Demands) + 2.6(Residential/Commercial) PHD = 1.37(Industrial Demands) + 4.4(Residential/Commercial)	12.4 17.4	15.6 22.8	24.0 36.9	34.4 54.4	49. 79.
3. Supply Requirements		(MGD)	(MGD)	(MGD)	(MGD)	(MG
a. Required Supply	Supply to meet Max. Day Demands plus Standby 2.0 mgd	14.4	17.6	26.0	36.4	51.
b. Available Supply (Wells Capacity)		10.8	14.8	18.8	26.8	36
c. Recommended Upgrade		4.0	4.0	8.0	10.0	16
d. Number of New Wells	Assume 2.0 mgd per new supply well	2.0	2.0	4.0	5.0	8.
e. Proposed Total Supply (Well Capacity)		14.8	18.8	26.8	36.8	52.
4. Storage Requirements (25% Operational; 50% Emergency)		(MG)	(MG)	(MG)	(MG)	(M
a. Required Storage						
Operational Storage Fire Flow Storage	25% of Maximum Day Demand 3,500 gpm for 3 hours	3.1 0.63	3.9 0.63	6.0 0.63	8.6 0.63	12 0.6
Emergency Storage	50% of Maximum Day Demand	6.2	7.8	12.0	17.2	24
Total		9.9	12.3	18.6	26.4	37
b. Available Storage		1.0	6.0	12.0	19.0	27
c. Recommended New Storage		5.0	6.0	7.0	8.0	11
d. Proposed Total Storage		6.0	12.0	19.0	27.0	38
5. Alternate Storage Requirements (25% Operational; 0% Emergency)		(MG)	(MG)	(MG)	(MG)	(MC
a. Required Storage	25% of Maximum Day Demand					12
Operational Storage Fire Flow Storage	3,500 gpm for 3 hours	3.1 0.63	3.9 0.63	6.0 0.63	8.6 0.63	12
Emergency Storage	0% of Maximum Day Demand	0.03	0.03	0.03	0.03	<u>0.</u>
Total	·····	3.7	4.5	6.6	9.2	12
b. Available Storage		1.0	4.0	5.0	7.0	10
c. Recommended New Storage		3.0	1.0	2.0	3.0	3.
d. Proposed Total Storage		4.0	5.0	7.0	10.0	13

be currently owned by the City. All groundwater wells, existing and future must comply with current DHS water quality criteria in order to be accepted into the City's distribution system.

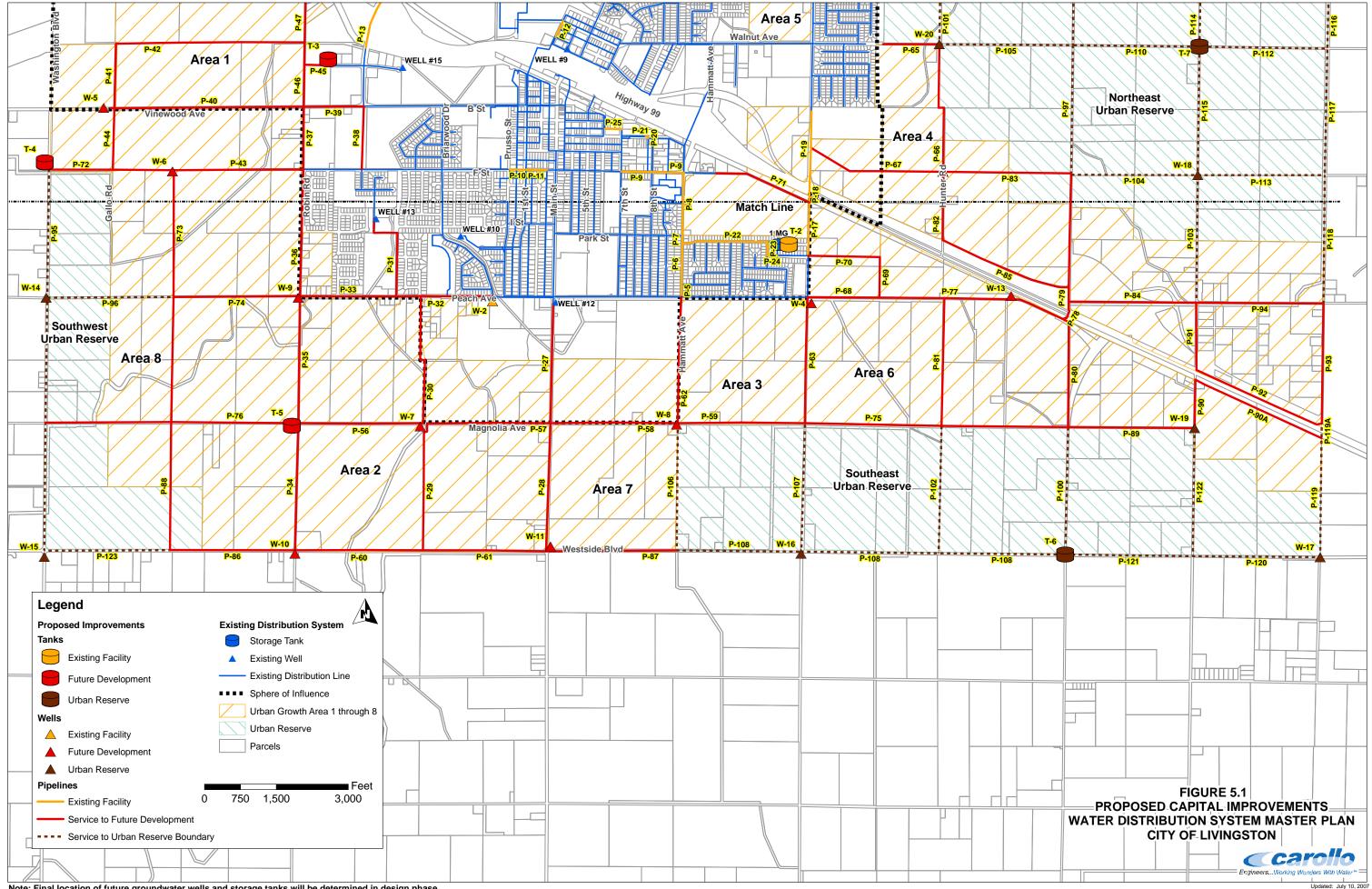
5.2 STORAGE CAPACITY

The City's current storage capacity provides a total storage of 1.0 MG for servicing the City's operational, fire, and emergency needs. A City-wide analysis of the storage needs, using the criteria discussed in a previous chapter was conducted. The storage requirements are based on providing emergency storage equivalent to 50 percent of the MDD. Table 5.1 summarizes the results of storage requirements. Also provided in Table 5.1 are the storage requirements if the emergency storage criteria is reduced to zero, and the City relies on wells for the emergency supply.

Table 5.1 indicates a current total deficiency of approximately 8.9 MG. Recognizing that constructing 8.5 MG of new storage in the first year of a CIP is unrealistic, it is recommended that the City construct 5 MG of storage in 2008 and an additional 26 MG before 2024 to mitigate the existing and future storage deficiencies.


Table 5.2 Summarizes the City's existing and recommended storage facilities. The recommendations are in accordance with the currently projected population forecasts and will allow the city to meet storage needs through the residential buildout of the 1999 General Plan. A total of 26 MG of additional storage is recommended by year 2024. Between year 2024 and buildout of the Urban Reserve, an additional 11 MG of storage would be required to service the area. Figure 5.1 shows the proposed location and size for each new storage tank.

5.3 RECOMMENDED IMPROVEMENTS


Based on the evaluation criteria discussed in a previous chapter, the hydraulic model was used to further evaluate the capacity of the existing distribution system. The hydraulic model evaluation consisted of 24-hour simulations during normal operations of a MDD condition. The MDD, the highest daily demand in the year, also includes the maximum anticipated hour demand. Extended period simulations were also used to verify the operational adequacy of the proposed storage tanks.

Fire flows were simulated in conjunction with MDD to identify the capability of the distribution system to respond to hypothetical fires. Only one hypothetical fire was applied during a staged single model simulation, and the magnitude of the fire flow varied depending on the predominant land use density or intensity. For example, 3,500 gpm was simulated in industrial areas and 2,500 gpm in commercial areas. The fire flow was reduced to 1,500 gpm in the residential areas.

Table 5.2	Existing and Recommended Storage I Water System Master Plan City of Livingston	Reservoirs		
Reservoir ¹	Reservoir Location/Proposed Reservoir Location	Volume (MG)	Height (ft)	Diameter (ft)
Existing Store	age Reservoirs			
T-EX	End of Burgundy Drive	1.00	30	75
	Total Existing Storage Capacity	1.00		
Recommende	ed Storage Reservoirs at 2024			
T-1	Olive Avenue Near Olds Avenue	5.00	30	168
T-2	Next to existing 1 MG Storage Reservoir	1.00	30	75
T-3	Gallo Road and Robin Avenue	6.00	30	185
T-4	Flint Avenue and Washington Boulevard	7.00	30	199
T-5	Robin Avenue and Magnolia Avenue	7.00	30	199
	Additional Recommended Storage Capacity	26.00		
Recommende	ed Storage Reservoirs at Urban Reserve Build ou	t		
T-6	Westside Boulevard between and Sultana	5.00	30	168
T-7	Walnut Ave and Arena Way	6.00	30	185
	Additional Recommended Storage Capacity	11.00		
	Total Storage Capacity at 2024	27.00		
	Total Storage Capacity at Urban Reserve Build out	38.00		

Note: Final location of future groundwater wells and storage tanks will be determined in design phase.

Note: Final location of future groundwater wells and storage tanks will be determined in design phase.

lo.	Coded	Type of	Livingston Description/	Description /	Future	Ex. Size/	New Size/	
10.	No.	Improv.	Street	Limits	Users Benefit	Diam. (in)	Diam. (in)	Length (ft)
ISTIN	NG FACIL	ITY IMPROVE	MENTS					
1	W-1	Supply Well	Olive Avenue	Olive Avenue East of Olds Avenue	0%		1400 gpm	
2	W-2	Supply Well Tank ⁴	Near Intersection	Lambrusco Ave. and Peach Ave.	0% 0%		1400 gpm 5.0 MG	
3 4	T-1 T-2	Tank Tank ⁴	Olive Avenue End of Burgundy Drive	Olive Avenue Near Olds Avenue New tank next to existing 1 MG storage tank	0%		1.0 MG	
5	P-1	Pipe	Olive Avenue	Olds Ave to Dwight Ave	75%		12	2,8
6	P-2	Pipe	Dwight Avenue	Olive Ave south to connect with existing 12-inch main on Dwight Ave.	75%		12	1,3
7 8	P-3 P-4	Pipe Pipe	Olive Avenue Olds Ave	Cressey Way to Olds Ave Olive Avenue to Grapevine Drive	0% 0%	8	12 16	8 1,2
9	P-5	Pipe	Hammatt Road	Peach Ave to Johannesburg Dr.	0%	6	12	2
10	P-6 P-7	Pipe	Hammatt Road	Johannesburg Dr. to Burgundy Dr.	0% 0%	6	12 12	8
1 2	P-7 P-8	Pipe Pipe	Hammatt Road Hammatt Road	Burgundy Dr. to Park St. Park St. to F St.	25%	8 6,8	12	1,3
13	P-9	Pipe	F Street	Hammatt Road to Seventh St.	0%	8	12	1,3
14 15	P-10 P-11	Pipe Pipe	F Street F Street	Prusso St. to First St. First St. to Ally between First St. and Main St.	0% 0%	4	12 12	3 4
5 6	P-11 P-12	Pipe	Stefani Avenue	Crowell St. to Davis St.	0%	4	12	3
7	P-13	Pipe	Winton Parkway	In Caltrans Winton Parkway Bridge to Campbell Blvd.	50%		12	1,2
8	P-14	Pipe	Winton Parkway	From Campbell Blvd to crossing under Railroad	50% 50%		12	1
9	P-15 P-16	Casing ¹ Pipe	Winton Parkway Campbell Blvd.	Crossing Under Railroad Connect with crossing under railroad to Well No. 11	50%		12/32 12	1
1	P-17	Pipe	Dwight Avenue	Claret Dr. to F St.	50%		16	1,1
2	P-18	Casing ¹	Dwight Avenue	Crossing under Railroad and California 99	50%		16/36	3
3 4	P-19 P-20	Pipe Pipe	Dwight Avenue D Street	Highway 99 north to connect with existing 12 in line West of Fighth St. running perpendicular to traffic flow	50% 0%	4	16 8	8
4 5	P-20 P-21	Pipe	D Street	West of Eighth St. running perpendicular to traffic flow West of Eighth St. connection to 8 inch line running east on D St.	0%	4	8	
6	P-22	Pipe	Burgundy Dr.	Pinot Dr. to Hammat Ave.	0%	8	16	1,7
7 8	P-23 P-24	Pipe Pipe	Pinot Dr. Claret Drive	Burgundy Dr. to Claret Dr. Pinot Drive to connect with existing 16-inch to Storage Tank	0% 0%	8 8	16 16	2 1,2
9 9	P-24 P-25	Pipe	Ally North of D St.	Sixth St. and Seventh St.	0%	o 4	8	1,4 3
0	P-26	Pipe	Foster Farms	Replace Existing 12-inch from main connecting to Well 11and Foster Farms Plant	0%	12	16	
		TURE DEVELC						
31	W-3	Supply Well	Foster Farms	Connect with line from well No. 11	50%		1400 gpm	
2 3	W-4 W-5	Supply Well ⁴ Supply Well ⁴	Near Intersection Near Intersection	Peach Avenue and Dwight Avenue Vinewood Avenue and Gallo Road	100% 100%		1400 gpm 1400 gpm	
3 4	W-6	Supply Well ⁴	Flint Avenue	Between Gallo Road and Robin Avenue	100%		1400 gpm 1400 gpm	
5	W-7	Supply Well ⁴	Near Intersection	Magnolia Avenue between Robin Avenue and Lincoln Boulevard	100%		1400 gpm	
86	W-8	Supply Well ⁴	Near Intersection	Hammat Avenue and Magnolia Avenue	100%		1400 gpm	
7	W-9	Supply Well ⁴	Near Intersection	Robin Avenue and Peach Avenue	100%		1400 gpm	
8	W-10	Supply Well ⁴	Near Intersection	Westside Boulevard and Robin Avenue	100%		1400 gpm	
9	W-11	Supply Well ⁴	Near Intersection	Westside Boulevard and Lincoln Boulevard	100%		1400 gpm	
0	W-12 W-13	Supply Well ⁴	Near Intersection	Hunter Road and Almond Avenue	100%		1400 gpm 1400 gpm	
1 12	VV-13 T-3	Supply Well ⁴ Tank ⁴	Near Intersection Gallo Road	Peach Ave and California Highway 99 Gallo Road and Robin Avenue	100% 75%		6.0 MG	
3	T-4	Tank ⁴	Flint Avenue	Flint Avenue and Washington Boulevard	100%		7.0 MG	
4	T-5	Tank ⁴	Robin Avenue	Robin Avenue and Magnolia Avenue	100%		7.0 MG	
5	P-27	Pipe	Lincoln Boulevard	From Well No.12 to Magnolia Ave	100%		12	1,
16 17	P-28 P-29	Pipe	Lincoln Boulevard	Magnolia Ave to Westside Blvd	100% 100%		12 12	2,1
8	P-29 P-30	Pipe Pipe	Arcadia Avenue Arcadia Avenue	Magnolia Ave to Westside Blvd Peach south to Magnolia Ave	100%		12	2,
9	P-31	Pipe	East of Monte Cristo II	Peach Ave to connect with Well No. 13	50%		12	2,
0 1	P-32 P-33	Pipe Pipe	Peach Avenue Peach Avenue	Winton Parkway to connect with existing 12-inch line on Peach Ave. Robin Ave to connect with new main from Well No. 13	25% 100%		12 12	2,0
2	P-33 P-34	Pipe	Robin Avenue	Magnolia Avenue to Westside Boulevard	100%		12	2, 2,
3	P-35	Pipe	Robin Avenue	Peach Ave. south to Magnolia Avenue	100%		12	2,
4 5	P-36 P-37	Pipe Pipe	Robin Avenue Robin Avenue	Flint Ave to Peach Ave Vinewood Ave to Flint Ave	100% 100%		12 12	2, 1,
5	P-37 P-38	Pipe	Winton Parkway Extension	B St. to F St.	75%		12	1,
,	P-39	Pipe	Vinewood Avenue	Winton Parkway to Robin Ave.	100%		12	1,
3 9	P-40 P-41	Pipe Pipe	Vinewood Avenue Gallo Road	West of Robin Ave. to Gallo Rd. North from Vinewood Ave. to north end of Gallo Road	100% 100%		12 12	4, 1,
,)	P-41	Pipe	Garibaldi Lateral	West from Robin Ave. along Garibaldi lateral to Gallo Rd.	100%		12	4,
1	P-43	Pipe	Flint Ave	Robin Ave to Gallo Road	100%		16	3,
2 3	P-44 P-45	Pipe Pipe	Gallo Road. Gallo Drive	Flint Ave to Vinewood Ave. East end of Gallo Drive to Robin Ave	100% 100%		12 12	1,
4	P-46	Pipe	Robin Avenue	Vinewood Ave to Gallo Drive	100%		12	
5	P-47	Pipe	Robin Avenue	North from Gallo Drive 1,780 feet	100%		12	1,
6	P-48	Pipe	Robin Avenue	Robin Ave to Highway 99	100%		12	
7 B	P-49 P-50	Casing ¹ Pipe	Robin Avenue Robin Avenue	Crossing under California 99 Highway 99 to Campbell Blvd.	100% 100%		12/32 12	
9	P-51	Pipe	Frontage Road	Southwest of RR to Winton Parkway	50%		12	1,
)	P-52	Pipe	Well No. 11	North from Well No. 11 1317 ft.	50%		12	1,
1 2	P-53 P-54	Pipe Pipe	Olive Avenue Olive Avenue	Hammatt Lateral 2,220 ft west Cressey Way to Hammatt Lateral	100% 100%		12 12	2, 3,
3	P-55	Pipe	Hammatt Lateral	Olive Ave south to connect with 12 inch line east of Well No.11	100%		12	3, 1,
4	P-56	Pipe	Magnolia Ave.	Robin Ave to Arcadia Drive	100%		12	2,
5 6	P-57 P-58	Pipe Pipe	Magnolia Ave. Magnolia Ave.	Arcadia Drive to Lincoln Blvd Lincoln Blvd to Hammatt Road	100% 100%		12 12	2, 2,
o 7	P-58 P-59	Pipe	Magnolia Ave.	Hammatt Road to Dwight Ave	100%		12	2,
8	P-60	Pipe	Westside Drive	Robin Ave to Arcadia Drive	100%		12	2,
9	P-61 P-62	Pipe	Westside Drive Hammatt Road	Arcadia Drive to Lincoln Blvd Peach Ave. south to Magnolia Ave	100%		12	2,
0 1	P-62 P-63	Pipe Pipe	Dwight Avenue	Peach Ave. south to Magnolia Ave Peach Ave. south to Magnolia Ave	100% 100%		12 12	2, 2,
2	P-64	Pipe	Grapevine Drive	From east end of grapevine Dr. to Dwight	100%		12	2,
3	P-65	Pipe	Walnut Ave.	Existing 10-inch on Walnut Ave. to Hunter Rd.	100%	1	12	1

			Livingston					
0.	Coded No.	Type of Improv.	Description/ Street	Description / Limits	Future Users	Ex. Size/ Diam.	New Size/ Diam.	Leng
5	P-67	Pipe	Almond Avenue	Hunter Road to Dwight Ave.	Benefit 100%	(in)	(in) 12	(ft 2,
6	P-68	Pipe	Peach Avenue	1,500 ft east on Peach Ave.	100%		12	1,
7	P-69	Pipe	North from Peach Avenue	North from Peach Ave. 850 ft	100%		10	
8 9	P-70 P-71	Pipe Pipe	Claret Drive F Street	East from Dwight Ave 1,500 ft F Street East along Railroad to Dwight	100% 50%		10 12	1
9	P-71	Pipe	Flint Ave	Washington Boulevard to Gallo Road	100%		12	1
1	P-73	Pipe	2,640 w/o Robin Road	Flint Avenue to Peach Avenue	100%		12	2
2	P-74	Pipe	Peach Ave	Robin Avenue 2,640 feet west	100%		12	2
3	P-75	Pipe	Magnolia Ave	Dwight Avenue to Sultana Drive	100%		12	5
1	P-76	Pipe	Magnolia Ave	Robin Avenue 2,640 feet west	100%		12	2
5	P-77	Pipe	Peach Ave	3,950 feet on Peach to Sultana Drive	100%		12	:
5	P-78	Casing ¹	Sultana Drive Sultana Drive	Crossing under California 99	100%		16/36	:
	P-79 P-80	Pipe Pipe	Sultana Drive Sultana Drive	Almond Avenue to California 99 Magnolia Avenue to California 99	100% 100%		12 12	:
,)	P-81	Pipe	Hunter Road	Peach Avenue to Magnolia Avenue	100%		12	
0	P-82	Pipe	Hunter Road	California 99 Frontage Road to Almond Avenue	100%		12	
1	P-83	Pipe	Almond Avenue	Sultana Drive to Hunter Road	100%		12	:
2	P-84	Pipe	Liberty Avenue	Sultana Drive to Arena Way	100%		12	:
3	P-85	Pipe	California 99 Frontage Road	Sultana Drive to Hunter Road	100%		12	:
4	P-86	Pipe	Westside Boulevard	Robin Avenue 2,640 feet west	100%		12	-
5 6	P-87 P-88	Pipe Pipe	Westside Boulevard Southwest Urban Reserve	Lincoln Boulevard to Hammat Avenue Magnolia Avenue to Westside Boulevard	100% 100%		12 12	:
7	P-89	Pipe	Magnolia Ave	Sultana Drive to Arena Way	100%		12	
B	P-90	Pipe	Arena Way	Magnolia Avenue to Highway 99	100%		12	
9	P-90A	Pipe	California 99 Frontage Road	Arena Way to Cressey Way	100%		12	:
0	P-91	Pipe	Arena Way	Peach Avenue to Highway 99	100%		12	
1	P-92	Pipe	California 99 Frontage Road	Arena Way to Cressey Way	100%		12	1
2 3	P-93 P-94	Pipe Pipe	Cressey Way Magnolia Ave	Highway 99 to Peach Avenue Arena Way to Cressey Way	100% 100%		12 12	:
4	W-14	Supply Well ⁴	E BOUNDARY Southwest Urban Expansion	Washington Boulevard and Peach Avenue	100%		1400 gpm	
5	W-15	Supply Well ⁴	Southwest Urban Expansion	Washington Boulevard and Westside Boulevard	100%		1400 gpm	
6	W-16	Supply Well ⁴	Southeast Urban Expansion	Westside Boulevard and Dwight Avenue	100%		1400 gpm	
7	W-17	Supply Well ⁴	Southeast Urban Expansion	Cressey Way and Westside Boulevard	100%		1400 gpm	
8	W-18	Supply Well ⁴	Northeast Urban Expansion	Arena Way and Almond Avenue	100%		1400 gpm	
9	W-19	Supply Well ⁴	Southeast Urban Expansion	Magnolia Avenue and Arena Way	100%		1400 gpm	
0	W-20	Supply Well ⁴	Northeast Urban Expansion	Hunter Road and Walnut Avenue	100%		1400 gpm	
1	W-21	Supply Well ⁴	Northeast Urban Expansion	Arena Way and Olive Avenue	100%		1400 gpm	
2	T-6	Tank ⁴	Westside Boulevard	Westside Boulevard and Sultana	100%		5.0 MG	
3	T-7	Tank⁵	Walnut Avenue	Arena Way and Walnut Avenue	100%		6.0 MG	
4	P-95	Pipe	Washington Boulevard	Flint Avenue to Westside Boulevard	100%		12	1
5	P-96	Pipe	Peach Ave	Washington Boulevard 2,640 feet east	100%		12	1
6 7	P-97 P-98	Pipe Pipe	Sultana Drive Olive Avenue	Olive Avenue to Almond Avenue Sultana Drive to Hunter Road	100% 100%		12 12	
B	P-98	Pipe	Olive Avenue	Dwight Avenue to Yamoto Road	100%		12	
9	P-100	Pipe	Sultana Drive	Westside Boulevard to Magnolia Avenue	100%		12	
0	P-101	Pipe	Yamoto Road	Olive Avenue to Walnut Avenue	100%		12	:
1	P-102	Pipe	Hunter Road	Magnolia Avenue to Westside Boulevard	100%		12	:
2	P-103	Pipe	Arena Way	Liberty Avenue 1,300 feet North	100%		12	
3 4	P-104 P-105	Pipe Pipe	Almond Avenue Walnut Avenue	Arena Way to Sultana Drive Sultana Drive to Hunter Road	100% 100%		12 12	
+ 5	P-105 P-106	Pipe	Hammat Avenue	Magnolia Avenue to Westside Boulevard	100%		12	
5	P-107	Pipe	Dwight Avenue	Magnolia Avenue to Westside Boulevard	100%		12	
7	P-108	Pipe	Westside Boulevard	Hammat Avenue to Sultana Drive	100%		12	
3	P-109	Pipe	Olive Avenue	Sultana Drive to Arena Way	100%		12	
9	P-110	Pipe	Walnut Avenue	Sultana Drive to Arena Way	100%		12	
) 1	P-111 P-112	Pipe Pipe	Olive Avenue Walnut Avenue	Arena Way to Cressey Way Sultana Drive to Arena Way	100% 100%		12 12	
2	P-113	Pipe	Almond Avenue	Sultana Drive to Arena Way	100%		12	
3	P-114	Pipe	Arena Way	Olive Avenue to Walnut Avenue	100%		12	
4	P-115	Pipe	Arena Way	Walnut Avenue to Almond Avenue	100%		12	
5	P-116	Pipe	Cressey Way	Olive Avenue to Walnut Avenue	100%		12	
6 7	P-117	Pipe	Cressey Way	Walnut Avenue to Almond Avenue	100%		12	
	P-118 P-119	Pipe Pipe	Cressey Way Cressey Way	Almond Avenue to Peach Avenue Highway 99 to Westside Boulevard	100% 100%		12 12	
	P-119 P-119A		Cressey Way Cressey Way	Crossing under California 99	200%		16/36	
3		Pipe	Westside Boulevard	Arena Way to Cressey Way	200%		12	
3 9	P-120					1	12	
, 8 9 0 1	P-120 P-121		Westside Boulevard	Sultana Drive to Arena Way	100%		12	
B 9 0		Pipe Pipe	Westside Boulevard Arena Way Westside Boulevard	Sultana Drive to Arena Way Magnolia Avenue to Westside Boulevard	100% 100%		12	

Figure 5.1 provides a graphical illustration of the improvements recommended to mitigate capacity deficiencies in the existing water system as identified by the hydraulic analysis. Each development project will include site-specific or project level engineering analysis and proposed solutions, to be consistent with the overall infrastructure approach in this Master Plan. Some degree of flexibility in developing proposed solutions may be considered appropriate by the City in order to ensure the best possible alternative for the City. The improvements are further summarized in Table 5.3 with a cross-referenced numbering system. Care was taken to explain each column in the order of its appearance in Table 5.4.

- No.: Number of Improvement
- Coded Number: Assigned number that corresponds to Proposed Improvements Table. This is an alphanumeric number that starts one letter indicating the type of improvement (T = Tank, P = Pipe, W = Well, V = Valve, B = Booster), and continues with a number designating the pressure zone (e.g. 1 = Pressure Zone 1).
- Type of Improvement: storage tanks, wells, pipelines, booster stations, pressure reducing valves (PRVs), jacked steel casings, and standby emergency power generators (EPG).
- Street Description: A street description in which the improvement is proposed.
- Limits: Limits that generally describe the beginning and end of a proposed project. This column is most useful when describing pipeline projects.
- Size/Diameter: This is the size of the proposed improvement. It represents the diameter of the proposed pipelines (in inches), the size of the storage reservoirs (in MG), the size of the wells (in gpm), and the size of the booster stations (in hp). Additionally, for jacked steel casings, the size of the casing as well as the carrier pipe are indicated (in inches).
- Length: Estimated length of the proposed improvement, in feet. It should be noted that the length estimates account for jogs necessary for crossing major obstructions such as a river or a railroad. However, it does not account for rerouting the alignment to avoid unknown conditions.

CAPITAL IMPROVEMENT PROGRAM

This chapter details the cost associated with improvement projects discussed previously and presents the cost estimating criteria and assumptions used in deriving the improvement cost. Table 6.2 details the capital cost associated with the projects presented in the previous section.

6.1 COST ESTIMATING CRITERIA

The cost estimates presented in this study are opinions developed from bid tabulations, cost curves, information obtained from previous studies, and Carollo Engineers, P.C. (Carollo) experience on other projects. The costs estimated for each recommended facility are opinions included in the tables developed with this study. The tables are intended to facilitate revisions to the City's CIP, and ultimately, to support determination of the user rates and connection impact fees. Recommendations for cost criteria of pipelines and reservoirs are also presented.

6.1.1 Cost Estimating Accuracy

The cost estimates presented in the project cost have been prepared for general master planning purposes and for guidance in project evaluation and implementation. Final costs of a project will depend on actual labor and material costs, competitive market conditions, final project scope, implementation schedule, and other variable factors such as: preliminary alignments generation, investigation of alternative routings, and detailed utility and topography surveys.

The American Association of Cost Engineers defines three types of cost estimates:

- An Order of Magnitude Estimate for Master Plan Studies. This is an approximate estimate made without detailed engineering data. It is normally expected that an estimate of this type would be accurate within +50 percent to -30 percent.
- A Budget Estimate for Predesign Study. A budget estimate is prepared with the use of flow sheets, layouts, and equipment details. It is normally expected that an estimate of this type would be accurate within +30 percent to -15 percent.
- A Definite Estimate (Engineer's Estimate) for Time of Contract Bidding. This estimate is prepared from very defined engineering data. The data includes fairly complete plot plans and elevations, soil data, and a complete set of specs. It is expected that a definite estimate would be accurate within +15 to -5 percent.

Costs developed for this study should be considered "order of magnitude" and have an expected accuracy range of +50 percent to -30 percent. The purpose of this chapter is to present the assumptions used in developing order of magnitude cost estimates for facilities

recommended with this feasibility study. Recommended facility improvements, which will address current deficiencies and facilities required to meet future City needs are presented within the body of the report.

6.1.2 Pipelines

Pipeline improvements to the City's distribution system range in size from 4- to 16-inches in diameter. Costs associated with pipelines ranging in size from 4-inches to 36-inches are shown on Table 6.1.

Table 6.1 Pipeline Costs Water Distribution System Master Plan City of Livingston							
	Pipe Size (inches)	\$/Lineal Foot					
	4	39					
	6	58					
	8	76					
	10	95					
	12	111					
	14	146					
	16	187					
	24	222					
	30	281					
	36	328					

6.1.3 Pump Stations

Costs associated with new pump station facilities include electrical, instrumentation, pumps, piping, pump station building, valves and other appurtenances required for a finished pump station. Costs not included are fencing, landscaping, roadwork, and piling. These items are not known at this time and may be considered a part of the contingency. A cost curve for pump station estimating is shown on Figure 6.1.

6.1.4 Reservoirs

Estimated reservoir costs include foundation, site preparation, inlet and outlet piping, and mechanical controls. A cost curve for reservoir estimating is shown on Figure 6.2.

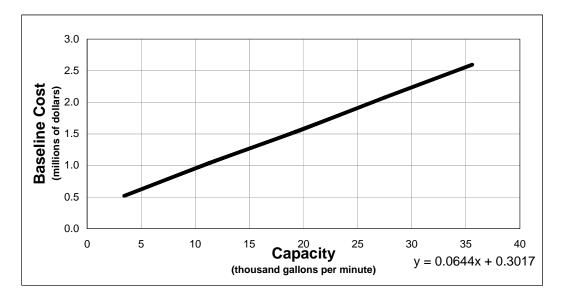


FIGURE 6.1 PUMPING STATION COSTS WATER DISTRIBUTION SYSTEM MASTER PLAN CITY OF LIVINGSTON

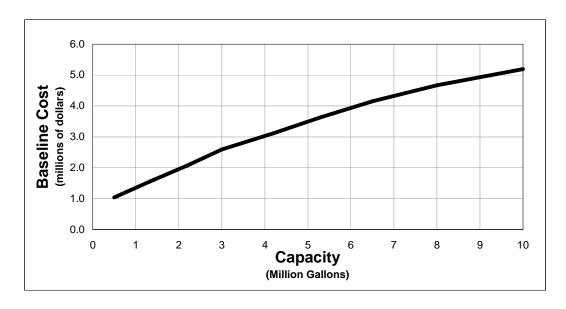


FIGURE 6.2 CONCRETE RESERVOIR COSTS WATER DISTRIBUTION SYSTEM MASTER PLAN CITY OF LIVINGSTON

6.1.5 Land Acquisition

Acquisition of property, easements, and right-of-way (ROW) will be required for some of the recommended projects. Additionally, the capital costs do not include pipeline corridor purchases or easement costs because it was assumed that public right-of-way would be utilized wherever possible. Land costs in Merced County are not easily determined, particularly in the project feasibility phase, and variables affecting properties can result in widely varying land prices. Since land acquisition costs are not included in this study, the final capital costs may vary from the estimates presented herein. Exception, based on direction from City staff land acquisition for reservoir sites were included at \$200,000 per acre per site.

6.2 CAPITAL IMPROVEMENT PROGRAM

The CIP for the improvements identified by this master plan are presented in Table 6.2. Care was taken to explain each column, in the previous chapter. Additional cost-related explanations are provided herein.

6.2.1 Baseline Construction Cost

This is the total estimated construction cost, in dollars, of the proposed improvement: pipes, wells, tanks, booster stations, pressure reducing valves (PRV), or emergency generators. Baseline Construction Costs were developed using the following criteria:

- Pipe Unit Cost: Estimated unit cost of pipeline is based on the pipe's present day cost and is expressed in dollars per linear foot (\$/LF) of pipe length. In the case of jacked steel casings, the unit cost includes the carrier pipe inside the casing.
- Pipe Cost: Estimated cost of the pipeline, calculated by multiplying the estimated length by the unit cost, in dollars.
- Other Infrastructure Facilities Costs: Estimated lump sum costs, in dollars, for the construction of infrastructure utilities, other than pipes. This includes wells, storage tanks, booster pump stations, pressure reducing valves, and emergency generators.

6.2.2 Estimated Construction Cost

Since knowledge about site-specific conditions of each proposed project is limited at the master planning stage, and in accordance with City standards, a 20 percent contingency was applied to the Baseline Construction Cost to account for unforeseen events and unknown conditions.

The Estimated Construction Cost, in dollars, for the proposed improvement consists of the Baseline Construction Cost plus the construction contingency.

Table 6.2 Capital Imp

Tab	ole 6.2	Water	I Improvement Pro Distribution Syste Livingston	-																		
			U	Itemized Cost Es	timate	1										mprovement P				Financii		
No.	Coded	Type of	Description/	Description /	Design and	Ex. Size	/ New Size/		App. Costs Unit	Pipe	Baseline Constr.	Estim. Constr.	Capital Improv.	Phase I	Phase II	Phase III	Phase IV	Phase V Urban Reserve	Future Users	Total Capital	Future Users	Existing Users
	No.	Improv.	Street	Limits	Construction Status	Diam. (in)	Diam. (in)	Replace	Length Cost (ft) (\$)	Cost (\$)	Cost (\$)	Cost ² (\$)	Cost ³ (\$)	2007-09 (\$)	2009-14 (\$)	2014-29 (\$)	2019-24 (\$)	Build out (\$)	Benefit (%)	Cost (\$)	Cost (\$)	Cost (\$)
EXIST	ING FACIL	ITY IMPROVE	MENTS																			
1	W-1	Supply Well		Olive Avenue East of Olds Avenue			1400 gpm	New			730,000	876,000	1,314,000	1,314,000					0%	1,314,000	0	1,314,000
2	W-2	Supply Well	Near Intersection	Lambrusco Ave. and Peach Ave.			1400 gpm	New			730,000	876,000	1,314,000	1,314,000					0%	1,314,000	0	1,314,000
3	T-1	Tank ⁴	Olive Avenue	Olive Avenue Near Olds Avenue			5.0 MG 1.0 MG	New New			3,500,000 1,600,000	4,200,000 1,920,000	6,300,000 2,880,000	6,300,000 2,880,000					0% 0%	6,300,000 2,880,000	0	6,300,000 2,880,000
4 5	T-2 P-1	Tank⁴ Pipe	End of Burgundy Drive Olive Avenue	New tank next to existing 1 MG storage tank Olds Ave to Dwight Ave			12	New	2,800 111	311,158	311,158	373,389	560,000	560,000					75%	560,000	420,000	140,000
6		Pipe	Dwight Avenue	Olive Ave south to connect with existing 12-inch main on Dwight Ave.			12 12	New New	1,320 111 810 111	146,689 90,014	146,689 90,014	176,026 108,016	264,000 162,000	264,000 162,000					75% 0%	264,000 162,000	198,000 0	66,000 162,000
8	P-3 P-4	Pipe Pipe	Olive Avenue Olds Ave	Cressey Way to Olds Ave Olive Avenue to Grapevine Drive		8	12	Replace	1,200 146	175,465	175,465	210,558	316,000		316,000				0%	316,000	0	316,000
9 10	P-5 P-6	Pipe Pipe	Hammatt Road Hammatt Road	Peach Ave to Johannesburg Dr. Johannesburg Dr. to Burgundy Dr.		6	12 12	Replace Replace	260 111 870 111	28,893 96,681	28,893 96.681	34,672 116,017	52,000 174,000	52,000 174,000					0% 0%	52,000 174.000	0	52,000 174,000
11	P-7	Pipe	Hammatt Road	Burgundy Dr. to Park St.		8	12	Replace	160 111	17,780	17,780	21,337	32,000	32,000					0%	32,000	0	32,000
12 13	P-8 P-9	Pipe Pipe	Hammatt Road F Street	Park St. to F St. Hammatt Road to Seventh St.		6,8	12 12	Replace Replace	1,320 111 1,310 111	146,689 145,577	146,689 145,577	176,026 174,693	264,000 262,000	264,000	262,000				25% 0%	264,000 262,000	66,000 0	198,000 262,000
14	P-10	Pipe	F Street	Prusso St. to First St.		4	12	Replace	350 111	38,895	38,895	46,674	70,000		70,000				0%	70,000	0	70,000
15 16	P-11 P-12	Pipe Pipe	F Street Stefani Avenue	First St. to Ally between First St. and Main St. Crowell St. to Davis St.		4	12 12	New Replace	450 111 380 111	50,008 42,229	50,008 42,229	60,009 50,674	90,000 76,000		90,000 76,000				0% 0%	90,000 76,000	0	90,000 76,000
17	P-13	Pipe	Winton Parkway	In Caltrans Winton Parkway Bridge to Campbell Blvd.			12	New	1,270 111	141,132	141,132	169,359	254,000		254,000				50%	254,000	127,000	127,000
18 19	P-14 P-15	Pipe Casing ¹	Winton Parkway Winton Parkway	From Campbell Blvd to crossing under Railroad Crossing Under Railroad			12 12/32	New New	175 111 170 526	19,447 89,487	19,447 89,487	23,337 107,385	35,000 161,000		35,000 161,000				50% 50%	35,000 161,000	17,500 80,500	17,500 80,500
20	P-16	Pipe	Campbell Blvd.	Connect with crossing under railroad to Well No. 11			12/32	New	200 111	22,226	22,226	26,671	40,000		40,000				50%	40,000	20,000	20,000
21	P-17	Pipe	Dwight Avenue	Claret Dr. to F St.			16	New New	1,120 146 330 585	163,767 193,011	163,767 193,011	196,521 231,614	295,000 347,000	295,000					50% 50%	295,000 347,000	147,500 173,500	147,500 173,500
22 23	P-18 P-19	Casing ¹ Pipe	Dwight Avenue Dwight Avenue	Crossing under Railroad and California 99 Highway 99 north to connect with existing 12 in line			16/36 16	New	330 585 820 146	119,901	119,901	143,881	216,000	347,000 216,000					50%	216,000	108,000	108,000
24	P-20	Pipe	D Street	West of Eighth St. running perpendicular to traffic flow		4	8	Replace	30 76	2,281	2,281 3,802	2,737 4,562	4,000	4,000					0%	4,000	0	4,000
25 26	P-21 P-22	Pipe Pipe	D Street Burgundy Dr.	West of Eighth St. connection to 8 inch line running east on D St. Pinot Dr. to Hammat Ave.		8	° 16	Replace Replace	50 76 1,780 146	3,802 260,273	260,273	4,562 312,328	7,000 468,000	7,000 468,000					0% 0%	7,000 468,000	0	7,000 468,000
27 28	P-23 P-24	Pipe	Pinot Dr. Claret Drive	Burgundy Dr. to Claret Dr. Binot Drive to connect with existing 16 inch to Storage Tank		8	16	Replace	290 146 1,201 146	42,404 175,611	42,404	50,885	76,000 316,000	76,000 316,000					0% 0%	76,000 316,000	0	76,000 316,000
28	P-24 P-25	Pipe Pipe	Ally North of D St.	Pinot Drive to connect with existing 16-inch to Storage Tank Sixth St. and Seventh St.		4	8	Replace Replace	360 76	27,373	175,611 27,373	210,733 32,847	49,000	316,000	49,000				0%	49,000	0	49,000
30	P-26	Pipe	Foster Farms	Replace Existing 12-inch from main connecting to Well 11and Foster Farms Plant		12	16	Replace	161 146	23,542	23,542	28,250	42,000		42,000				0%	42,000	0	42,000
SERV	ICE TO FU	TURE DEVEL	OPMENT																			
31	W-3	Supply Well	Foster Farms	Connect with line from well No. 11			1400 gpm	New			730,000	876,000	1,314,000		1,314,000				50%	1,314,000	657,000	657,000
32	W-4		Near Intersection	Peach Avenue and Dwight Avenue			1400 gpm				730,000	876,000	1,314,000		1,314,000				100%	1,314,000	1,314,000	0
33	W-5		Near Intersection	Vinewood Avenue and Gallo Road			1400 gpm	New			730,000	876,000	1,314,000			1,314,000			100%	1,314,000	1,314,000	0
34	W-6		Flint Avenue	Between Gallo Road and Robin Avenue			1400 gpm	New			730,000	876,000	1,314,000			1,314,000			100%	1,314,000	1,314,000	0
35 36	W-7 W-8	Supply Well ⁴	Near Intersection Near Intersection	Magnolia Avenue between Robin Avenue and Lincoln Boulevard Hammat Avenue and Magnolia Avenue			1400 gpm 1400 gpm	New			730,000 730,000	876,000 876,000	1,314,000 1,314,000			1,314,000 1,314,000			100% 100%	1,314,000 1,314,000	1,314,000 1,314,000	0
37	W-9	Supply Well ⁴		Robin Avenue and Peach Avenue			1400 gpm	New			730,000	876,000	1,314,000			1,011,000	1,314,00	0	100%	1,314,000	1,314,000	0
38	W-10			Westside Boulevard and Robin Avenue			1400 gpm	New			730,000	876,000	1,314,000				1,314,00		100%	1,314,000	1,314,000	0
39	W-11		Near Intersection	Westside Boulevard and Lincoln Boulevard			1400 gpm	New			730,000	876,000	1,314,000				1,314,00 1,314,00		100%	1,314,000	1,314,000	0
40 41	W-12 W-13	Supply Well ⁴ Supply Well ⁴	Near Intersection Near Intersection	Hunter Road and Almond Avenue Peach Ave and California Highway 99			1400 gpm 1400 gpm	New New			730,000 730,000	876,000 876,000	1,314,000 1,314,000				1,314,00		100% 100%	1,314,000 1,314,000	1,314,000 1,314,000	0
42	T-3	Tank ⁴	Gallo Road	Gallo Road and Robin Avenue			6.0 MG	New			4,100,000	4,920,000	7,380,000		7,380,000		,- ,		75%	7,380,000	5,535,000	1,845,000
43	T-4	Tank ⁴	Flint Avenue	Flint Avenue and Washington Boulevard			7.0 MG	New			4,700,000	5,640,000	8,460,000			8,460,000			100%	8,460,000	8,460,000	0
44 45	T-5 P-27	Tank ⁴ Pipe	Robin Avenue Lincoln Boulevard	Robin Avenue and Magnolia Avenue From Well No.12 to Magnolia Ave			7.0 MG 12	New New	1,400 111	155,579	4,700,000 155,579	5,640,000 186,695	8,460,000 280,000			280,000	8,460,00	00	100% 100%	8,460,000 280,000	8,460,000 280,000	0
40		Pipe	Lincoln Boulevard	Magnolia Ave to Westside Blvd			12	New	2,700 111	300,045	300,045	360,054	540,000			280,000	540,00	0	100%	540,000	540,000	0
47 48	P-29	Pipe	Arcadia Avenue	Magnolia Ave to Westside Blvd			12	New	2,700 111 2,700 111	300,045	300,045	360,054	540,000			540.000	540,00	00	100% 100%	540,000	540,000	0
40	P-30 P-31	Pipe Pipe	Arcadia Avenue East of Monte Cristo II	Peach south to Magnolia Ave Peach Ave to connect with Well No. 13			12 12	New New	2,700 111 2,120 111	300,045 235,591	300,045 235,591	360,054 282,709	540,000 424,000			540,000 424,000			50%	540,000 424,000	540,000 212,000	212,000
50 51	P-32	Pipe	Peach Avenue	Winton Parkway to connect with existing 12-inch line on Peach Ave.			12	New	750 111	83,346	83,346	100,015	150,000			150,000			25%	150,000	37,500	112,500
52	P-33 P-34	Pipe Pipe	Peach Avenue Robin Avenue	Robin Ave to connect with new main from Well No. 13 Magnolia Avenue to Westside Boulevard			12 12	New New	2,000 111 2,660 111	222,256 295,600	222,256 295,600	266,707 354,720	400,000 532,000			400,000	532,00	0	100% 100%	400,000 532,000	400,000 532,000	0
53 54	P-35	Pipe	Robin Avenue	Peach Ave. south to Magnolia Avenue			12 12	New	2,660 111 2,650 111	295,600	295,600	354,720	532,000			532,000			100%	532,000	532,000	0
54 55	P-36 P-37	Pipe Pipe	Robin Avenue Robin Avenue	Flint Ave to Peach Ave Vinewood Ave to Flint Ave			12	New New	2,650 111 1,320 111	294,489 146,689	294,489 146,689	353,386 176,026	530,000 264,000			530,000 264,000			100% 100%	530,000 264,000	530,000 264,000	0
56 57	P-38	Pipe	Winton Parkway Extension	B St. to F St.			12 12	New	1,330 111	147,800	147,800	177,360	266,000			266,000			75%	266,000	199,500	66,500
57	P-39 P-40	Pipe Pipe	Vinewood Avenue Vinewood Avenue	Winton Parkway to Robin Ave. West of Robin Ave. to Gallo Rd.			12	New New	1,260 111 4,000 111	140,021 444,511	140,021 444,511	168,025 533,413	252,000 800,000			252,000 800,000			100% 100%	252,000 800,000	252,000 800,000	0
59	P-41	Pipe	Gallo Road	North from Vinewood Ave. to north end of Gallo Road			12	New	1,350 111	150,023	150,023	180,027	270,000			270,000			100%	270,000	270,000	0
60 61	P-42 P-43	Pipe Pipe	Garibaldi Lateral Flint Ave	West from Robin Ave. along Garibaldi lateral to Gallo Rd. Robin Ave to Gallo Road			12 16	New New	4,000 111 3,980 146	444,511 581,959	444,511 581,959	533,413 698,351	800,000 1,048,000			800,000 1,048,000			100% 100%	800,000 1,048,000	800,000 1,048,000	0
62	P-44	Pipe	Gallo Road.	Flint Ave to Vinewood Ave.			12	New	1,285 111	142,799	142,799	171,359	257,000			257,000			100%	257,000	257,000	0
63 64		Pipe Pipe	Gallo Drive Robin Avenue	East end of Gallo Drive to Robin Ave Vinewood Ave to Gallo Drive			12 12	New New	590 111 880 111	65,565 97,792	65,565 97,792	78,678 117,351	118,000 176,000			118,000 176,000			100% 100%	118,000 176,000	118,000 176,000	0
65	P-47	Pipe	Robin Avenue	North from Gallo Drive 1,780 feet			12	New	1,780 111	197,807	197,807	237,369	356,000			356,000			100%	356,000	356,000	0
66	P-48	Pipe	Robin Avenue	Robin Ave to Highway 99			12 12/32	New New	450 111 390 526	50,008 205,294	50,008 205,294	60,009 246,353	90,000 370,000			90,000			100%	90,000 370,000	90,000 370,000	0
67 68	P-49 P-50	Casing ¹ Pipe	Robin Avenue Robin Avenue	Crossing under California 99 Highway 99 to Campbell Blvd.			12	New	270 111	30,005	30,005	36,005	54,000			370,000 54,000			100% 100%	54,000	54,000	ő
69 70	P-51 P-52	Pipe Pipe	Frontage Road Well No. 11	Southwest of RR to Winton Parkway North from Well No. 11 1317 ft.			12 12	New New	1,300 111 1,330 111	144,466 147,800	144,466 147,800	173,359 177,360	260,000 266,000			260,000 266,000			50% 50%	260,000 266,000	130,000 133,000	130,000 133,000
70	P-52 P-53	Pipe Pipe	Olive Avenue	Hammatt Lateral 2,220 ft west			12	New	1,330 111 2,220 111	246,704	246,704	296,044	444,000			444,000			100%	266,000 444,000	444,000	0
72	P-54	Pipe	Olive Avenue	Cressey Way to Hammatt Lateral			12	New	3,030 111 1,330 111	336,717	336,717	404,061	606,000 266,000			606,000 266,000			100%	606,000	606,000	0
73 74	P-55 P-56	Pipe Pipe	Hammatt Lateral Magnolia Ave.	Olive Ave south to connect with 12 inch line east of Well No.11 Robin Ave to Arcadia Drive			12 12	New New	1,330 111 2,650 111	147,800 294,489	147,800 294,489	177,360 353,386	266,000 530,000			266,000 530,000			100% 100%	266,000 530,000	266,000 530,000	0
75	P-57	Pipe	Magnolia Ave.	Arcadia Drive to Lincoln Blvd			12	New	2,600 111	288,932	288,932	346,719	520,000			520,000			100%	520,000	520,000	0
76 77	P-58 P-59	Pipe Pipe	Magnolia Ave. Magnolia Ave.	Lincoln Blvd to Hammatt Road Hammatt Road to Dwight Ave			12 12	New New	2,600 111 2,600 111	288,932 288,932	288,932 288,932	346,719 346,719	520,000 520,000			520,000	520,00	0	100% 100%	520,000 520,000	520,000 520,000	0
78	P-60	Pipe	Westside Drive	Robin Ave to Arcadia Drive			12	New	2,700 111	300,045	300,045	360,054	540,000				540,00	00	100%	540,000	540,000	0
79 80	P-61 P-62	Pipe Pipe	Westside Drive Hammatt Road	Arcadia Drive to Lincoln Blvd Peach Ave. south to Magnolia Ave			12 12	New New	2,600 111 2,650 111	288,932 294,489	288,932 294,489	346,719 353,386	520,000 530,000			530,000	520,00	U	100% 100%	520,000 530,000	520,000 530,000	0
																				,,		0

Table 6.2 Capital Improvement Program

Type of Improv. Descr Str Pipe Dwight Avenue Pipe Grapevine Drive Pipe Walnut Ave. Pipe Hunter Rd. Pipe North from Peach Pipe Claret Drive Pipe F Street Pipe F Street Pipe F Street Pipe Z,640 w/o Robin Pipe Peach Ave Pipe Pach Ave Pipe Magnolia Ave	t Limits Peach Ave. south to Magnolia Ave From east end of grapevine Dr. to Dwight Existing 10-inch on Walnut Ave. to Hunter Rd. 2,770 ft south from Walnut Ave. to Hunter Rd. Hunter Road to Dwight Ave. 1,500 ft east on Peach Ave. North from Peach Ave. 850 ft East from Dwight Ave 1,500 ft	Design and Construction Status	Ex. Size/ New Size Diam. Diam. (in) (in) 12 12		d App. Costs Unit Length Cost	Pipe	Baseline Constr.	Estim. Constr.	Capital Improv.	Phase I	Phase II	Phase III	Phase IV	Phase V Urban Reserve	Future Users	Total Capital	Future Users	Existi User
Improv. Str Pipe Dwight Avenue Pipe Grapevine Drive Pipe Walnut Ave. Pipe Hunter Rd. Pipe Almond Avenue Pipe Post Avenue Pipe North from Peaci Pipe Claret Drive Pipe F Street Pipe F (Ado w/o Robin Pipe 2,640 w/o Robin	t Limits Peach Ave. south to Magnolia Ave From east end of grapevine Dr. to Dwight Existing 10-inch on Walnut Ave. to Hunter Rd. 2,770 ft south from Walnut Ave. to Hunter Rd. Hunter Road to Dwight Ave. 1,500 ft east on Peach Ave. North from Peach Ave. 850 ft East from Dwight Ave 1,500 ft	Construction	Diam. Diam. (in) (in) 12		Longth Coot													
Pipe Grapevine Drive Pipe Walnut Ave. Pipe Hunter Rd. Pipe Almond Avenue Pipe North from Peacl Pipe Claret Drive Pipe F Street Pipe F Init Ave Pipe Z,640 w/o Robin Pipe Peach Ave	From east end of grapevine Dr. to Dwight Existing 10-inch on Walnut Ave. to Hunter Rd. 2,770 ft south from Walnut Ave on Hunter Rd. Hunter Road to Dwight Ave. 1,500 ft east on Peach Ave. North from Peach Ave. 850 ft East from Dwight Ave 1,500 ft	Jiatus	12		Length Cost	Cost (\$)	Cost	Cost ²	Cost ³ (\$)	2007-09	2009-14 (\$)	2014-29	2019-24	Build out	Benefit (%)	Cost (\$)	Cost	Cos
Pipe Walnut Ave. Pipe Hunter Rd. Pipe Almond Avenue Pipe Peach Avenue Pipe Claret Drive Pipe F Street Pipe F int Ave Pipe F int Ave Pipe F int Ave Pipe F Avenue	Existing 10-inch on Walnut Ave. to Hunter Rd. 2,770 tf south from Walnut Ave on Hunter Rd. Hunter Road to Dwight Ave. 1,500 ft east on Peach Ave. North from Peach Ave. 850 ft East from Dwight Ave 1,500 ft		12	New	2,630 111	292,266	292,266	350,719	526,000	(\$)	(*)	(\$)	(\$) 526,000	(\$)	100%	526,000	526,000	
Pipe Hunter Rd. Pipe Almond Avenue Pipe Peach Avenue Pipe North from Peaci Pipe Claret Drive Pipe F Street Pipe F lint Ave Pipe Z,640 w/o Robin Pipe Peach Ave	2,770 Ît south from Walnut Ave on Hunter Rd. Hunter Road to Dwight Ave. 1,500 ft east on Peach Ave. North from Peach Ave. 850 ft East from Dwight Ave 1,500 ft		12	New New	2,650 111 1.540 111	294,489 171,137	294,489 171,137	353,386 205,364	530,000 308,000			530,000	308,000		100% 100%	530,000 308,000	530,000 308,000	
Pipe Almond Avenue Pipe Peach Avenue Pipe North from Peaci Pipe Claret Drive Pipe F Street Pipe F lint Ave Pipe 2,640 w/o Robin Pipe Peach Ave	Hunter Road to Dwight Ave. 1,500 ft east on Peach Ave. venue North from Peach Ave. 850 ft East from Dwight Ave 1,500 ft		12	New	2,770 111	307,824	307,824	369,389	554,000				554,000		100%	554,000	554,000	
Pipe North from Peac Pipe Claret Drive Pipe F Street Pipe Flint Ave Pipe 2,640 w/o Robin Pipe Peach Ave	North from Peach Ave. 850 ft East from Dwight Ave 1,500 ft		12	New	2,890 111	321,159	321,159	385,391	578,000				578,000		100%	578,000	578,000	
Pipe Claret Drive Pipe F Street Pipe Flint Ave Pipe 2,640 w/o Robin Pipe Peach Ave	East from Dwight Ave 1,500 ft		12	New	1,500 111	166,692	166,692	200,030	300,000				300,000		100%	300,000	300,000	
PipeF StreetPipeFlint AvePipe2,640 w/o RobinPipePeach Ave			10 10	New New	850 95 1,500 95	80,345 141,786	80,345 141,786	96,414 170,143	145,000 255,000				145,000		100% 100%	145,000 255,000	145,000 255,000	
PipeFlint AvePipe2,640 w/o RobinPipePeach Ave	F Street East along Railroad to Dwight		10	New	2,090 111	232,257	232,257	278,709	418,000			418,000	255,000		50%	418,000	209,000	
Pipe Peach Ave	Washington Boulevard to Gallo Road		16	New	1,340 146	195,936	195,936	235,123	353,000			110,000	353,000		100%	353,000	353,000	
			12	New	2,650 111	294,489	294,489	353,386	530,000				530,000		100%	530,000	530,000	
Pipe Magnolia Ave	Robin Avenue 2,640 feet west		12	New	2,640 111	293,377	293,377	352,053	528,000				528,000		100%	528,000	528,000	
Pipe Magnolia Ave	Dwight Avenue to Sultana Drive Robin Avenue 2,640 feet west		12	New New	5,500 111 2,640 111	611,203 293,377	611,203 293,377	733,444 352,053	1,100,000 528,000				1,100,000 528,000		100% 100%	1,100,000 528,000	1,100,000 528,000	
Pipe Peach Ave	3,950 feet on Peach to Sultana Drive		12	New	3,950 111	438,955	438,955	526,746	790,000				790,000		100%	790,000	790,000	
Casing ¹ Sultana Drive	Crossing under California 99		16/36	New	290 585	169,616	169,616	203,539	305,000				305,000		100%	305,000	305,000	
Pipe Sultana Drive	Almond Avenue to California 99		12	New	2,830 111	314,492	314,492	377,390	566,000				566,000		100%	566,000	566,000	
Pipe Sultana Drive	Magnolia Avenue to California 99		12	New	2,330 111	258,928	258,928	310,713	466,000				466,000		100%	466,000	466,000	
Pipe Hunter Road	Peach Avenue to Magnolia Avenue		12	New	2,670 111	296,711	296,711	356,053	534,000				534,000		100%	534,000	534,000	
Pipe Hunter Road Pipe Almond Avenue	California 99 Frontage Road to Almond Avenue Sultana Drive to Hunter Road		12	New New	1,430 111 2.680 111	158,913 297.823	158,913 297,823	190,695 357,387	286,000 536,000				286,000 536,000		100% 100%	286,000 536,000	286,000 536,000	
Pipe Liberty Avenue	Sultana Drive to Arena Way		12	New	2,660 111	295,600	295,600	354,720	532,000				532,000		100%	532,000	532,000	
Pipe California 99 Fro	age Road Sultana Drive to Hunter Road		12	New	2,850 111	316,714	316,714	380,057	570,000				570,000		100%	570,000	570,000	
Pipe Westside Boulev			12	New	2,640 111	293,377	293,377	352,053	528,000				528,000		100%	528,000	528,000	
Pipe Westside Boulev Pipe Southwest Urbar			12	New New	2,730 111 2.670 111	303,379 296,711	303,379 296,711	364,055 356,053	546,000 534,000				546,000 534,000		100% 100%	546,000 534,000	546,000 534,000	
Pipe Magnolia Ave	Sultana Drive to Arena Way		12	New	2,660 111	295,600	295,600	354,720	532,000				532,000		100%	532,000	532,000	
Pipe Arena Way	Magnolia Avenue to Highway 99		12	New	1,100 111	122,241	122,241	146,689	220,000				220,000		100%	220,000	220,000	
Pipe California 99 Fro			12	New	2,900 111	322,271	322,271	386,725	580,000				580,000		100%	580,000	580,000	
Pipe Arena Way	Peach Avenue to Highway 99		12	New	1,280 111	142,244	142,244	170,692	256,000				256,000		100%	256,000	256,000	
Pipe California 99 Fro			12	New	2,900 111	322,271	322,271	386,725	580,000				580,000		100%	580,000	580,000	
Pipe Cressey Way Pipe Magnolia Ave	Highway 99 to Peach Avenue Arena Way to Cressey Way		12	New New	2,600 111 2,660 111	288,932 295,600	288,932 295,600	346,719 354,720	520,000 532,000				520,000 532,000		100% 100%	520,000 532,000	520,000 532,000	
Supply Well ⁴ Northeast Urban Tank ⁴ Westside Boulev Tank ⁵ Walnut Avenue Pipe Pach Ave Pipe Sultana Drive Pipe Olive Avenue Pipe Yatton Road Pipe Hunter Road Pipe Hunter Road Pipe Hammat Avenue Pipe Hammat Avenue Pipe Dive Avenue Pipe Dive Avenue Pipe Dive Avenue Pipe Olive Avenue Pipe Val	Agnolia Ávenue and Arena Way xpansion Hunter Road and Walnut Avenue xpansion Hunter Road and Walnut Avenue xpansion Arena Way and Olive Avenue d Westside Boulevard and Sultana Arena Way and Walnut Avenue Hunter ard Flint Avenue to Westside Boulevard Washington Boulevard 2,640 feet east Olive Avenue to Almond Avenue Sultana Drive to Hunter Road Dwight Avenue to Yamoto Road Westside Boulevard to Magnolia Avenue Olive Avenue to Westside Boulevard Ubievarbur to Walnut Avenue Magnolia Avenue to Westside Boulevard Liberty Avenue to Westside Boulevard Liberty Avenue 1,300 feet North Arena Way to Sultana Drive Sultana Drive to Hunter Road Magnolia Avenue to Westside Boulevard Magnolia Avenue to Westside Boulevard		1400 gpr 1400 gpr 1400 gpr 5.0 MG 6.0 MG 12 12 12 12 12 12 12 12 12 12 12 12 12	n New n New n New	8,000 111 2,640 111 5,280 111 2,780 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,700 111 2,700 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111 2,660 111	889,022 293,377 586,755 308,935 295,600 310,047 295,600 300,045 300,045 300,045 900,135 295,600 295,600 295,600 295,600	730,000 730,000 730,000 3,500,000 4,100,000 4,100,000 295,600 295,600 295,600 300,045 295,600 300,045 300,045 900,135 295,600 295,600 295,600 295,600	876,000 876,000 876,000 4,200,000 4,200,000 4,920,000 1,066,827 352,053 704,106 370,722 354,720 354,720 354,720 364,720 364,720 364,720 354,720 354,720 354,720	1,314,000 1,314,000 1,314,000 6,300,000 7,380,000 1,600,000 528,000 1,056,000 532,000 532,000 532,000 532,000 532,000 540,000 1,620,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000					1,314,000 1,314,000 1,314,000 6,300,000 7,380,000 1,600,000 558,000 558,000 558,000 558,000 532,000 540,000 540,000 540,000 540,000 540,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000	100% 100% 100% 100% 100% 100% 100% 100%	1,314,000 1,314,000 1,314,000 6,300,000 7,380,000 1,600,000 528,000 1,056,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000	1,314,000 1,314,000 1,314,000 6,300,000 7,380,000 1,600,000 528,000 1,656,000 532,000 532,000 532,000 540,000 532,000 540,000 1,620,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000	
Pipe Arena Way Pipe Arena Way Pipe Cressey Way Pipe Cressey Way Pipe Cressey Way Pipe Cressey Way Casing ¹ Cressey Way Pipe Westside Boulev Pipe Westside Boulev Pipe Westside Boulev Pipe Westside Boulev	d Sultana Drive to Arena Way Magnolia Avenue to Westside Boulevard		12 12 12 12 12 12 16/36 12 12 12 12 12	New New New New New New New New New New	2,660 1111 2,660 1111 2,660 1111 2,660 1111 2,600 1111 2,700 1111 2,660 1111 2,660 1111 2,660 1111 2,700 1111 2,640 1111	295,600 295,600 295,600 295,600 300,045 169,616 295,600 295,600 300,045 293,377	295,600 295,600 295,600 295,600 300,045 169,616 295,600 295,600 300,045 293,377	354,720 354,720 354,720 354,720 360,054 203,539 354,720 354,720 354,720 360,054 352,053	532,000 532,000 532,000 532,000 540,000 305,000 532,000 532,000 540,000 528,000					532,000 532,000 532,000 532,000 540,000 532,000 532,000 532,000 532,000 540,000 540,000	100% 100% 100% 100% 100% 100% 100% 100%	532,000 532,000 532,000 532,000 532,000 540,000 532,000 532,000 532,000 532,000 540,000 528,000 129,058,000 11	532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 532,000 540,000 528,000	

Estimated Construction Cost plus 50% to cover other costs including: engineering, administration, construction inspection, and legal costs.
 Final location of future groundwater wells to be determined.
 Land acquisition costs, which may be required for some of the proposed improvements, can widely vary and are NOT included in this capital improvement program. However land acquisition costs for reservoirs has been included (\$100,000 per reservoir included)

6.2.3 Capital Improvement Cost

Other project-related costs have been identified and estimated at 50 percent of the Estimated Construction Costs (per City standards). These costs include engineering, administration, construction inspection, and legal costs.

The Capital Improvement Cost, in dollars, for each proposed improvement is the total of the Estimated Construction Cost (including contingency) plus the other costs discussed in the previous paragraph.

6.2.4 Capital Improvement Program

The CIP projects are prioritized based on their urgency to mitigate existing deficiencies and for servicing anticipated growth. It is recommended that improvements to mitigate existing deficiencies be constructed as soon as possible.

It is assumed that any replacement pipes will be in the same alignment and at the same slope as the existing pipe. However, this study recommends an investigation of the alignment during the pre-design stage of each project.

6.2.5 Future Users Benefit

This is an opinion of benefit to future users. A zero percent indicates that the improvement benefits existing users, while 100 percent indicates that it benefits future users.

It should be noted that these opinions are based on preliminary project information. Once estimates for specific projects are completed, a more precise allocation may be performed if required by the provisions of the California Government Code Section 66000 and AB 1600.

6.3 FUNDING AND FINANCING OPTIONS

Utility rates and connection fees are collected to pay off debt financing, to fund capital improvements, and to pay operations and maintenance costs. Connection fees are charges, imposed by local agencies on new developments, for recovering the capital costs of public facilities needed to service those developments. These fees and charges must satisfy the provisions of California Government Code Section 66000 which went into effect on January 1, 1989. These provisions, for water and water connection fees, are also known as AB1600 provisions, referring to Assembly Bill 1600 that introduced the provision. The provisions, as they relate to water and water connection fees, dictate that the "....charges do not exceed the estimated reasonable cost of providing the service for which the fee or charge is imposed..."

The improvements in this master plan have been classified into two categories:

• Services benefiting existing development.

• Services necessitated by or benefiting new development.

An opinion of benefit to future users, based on preliminary project information, was included in this master plan. Once estimates for specific projects are completed, a more precise allocation may be performed if required by the provisions of the California Government Code Section 66000 and AB 1600.

New development is defined as any land use change or construction that takes place after the funding procedures recommended in this plan are adopted. Existing development includes properties where no new construction or redevelopment occurs. Due to state law and political realities, the funding and financing options available differ somewhat for these two categories.